scholarly journals Estrogen-Metabolizing Enzymes in Breast Cancers from Women over the Age of 80 Years

2006 ◽  
Vol 91 (2) ◽  
pp. 607-613 ◽  
Author(s):  
Naoko Honma ◽  
Kaiyo Takubo ◽  
Motoji Sawabe ◽  
Tomio Arai ◽  
Futoshi Akiyama ◽  
...  

Context: Aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenase type 1 (HSD-1) peripherally up-regulate, whereas estrogen sulfotransferase (EST) and HSD-2 down-regulate, the synthesis of active and more potent estrogens. These estrogen-metabolizing enzymes (EMEs) are important in postmenopausal breast cancers, but have never been systematically examined in breast cancers of the elderly. Objective and Design: mRNA levels of EMEs in cancerous and normal breast tissues from 39 elderly patients (age, 80–99 yr) were compared with those from 39 controls (age, 37–70 yr) or compared according to estrogen (ER)/progesterone (PR) receptor status. Results: Aromatase levels were higher in cancers of the elderly (EldCa) than in normal tissue of the elderly (P = 0.0008) or cancers of controls (P = 0.0033). In contrast, levels of steroid sulfatase and EST were higher in cancers of controls than normal tissue of controls (P = 0.0046 and P < 0.0001, respectively) or EldCa (P = 0.0001 and P < 0.0001, respectively). Levels of HSD-1 and HSD-2 did not differ significantly between any two of the categories. Among EldCa, HSD-1 levels were higher in ER/PR-positive than in ER/PR-negative carcinomas, whereas EST and HSD-2 exhibited opposite results. Conclusions: The importance of aromatase is relatively increased in EldCa. ER/PR-positive EldCa exhibited a pattern of EMEs more beneficial to the production of estrogen than did ER/PR-negative EldCa. The specific pattern exhibited in EldCa may elucidate the role of EMEs in the absence of ovarian estrogens in the pathogenesis of breast cancer.

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 437
Author(s):  
Ting Gong ◽  
Weiyong Wang ◽  
Houqiang Xu ◽  
Yi Yang ◽  
Xiang Chen ◽  
...  

Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Attila Bebes ◽  
Ferenc Kovács-Sólyom ◽  
Judit Prihoda ◽  
Róbert Kui ◽  
Lajos Kemény ◽  
...  

This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4+CD25−effector and CD4+CD25+CD127lowregulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.


Author(s):  
B. Deepthi ◽  
D. Ratnamma ◽  
R.N. Ramani Pushpa ◽  
Shrikrishna Isloor ◽  
B.M. Veeregowda ◽  
...  

Background: Newcastle disease caused by Avian avulavirus type 1 (AAvV-1) is one of the dreadful diseases affecting poultry and other avian species. Wild birds and several domestic birds are recognized as reservoirs of AAvV-1 and probably contribute to the epidemiology of ND in the domesticated poultry. Hence, efforts have been made to understand the virulence and genetic nature of AAvV-1 isolates obtained from apparently healthy Emu birds.Methods: This study details characterization of a velogenic Emu/5 AAvV-1 isolate obtained from an asymptomatic emu flock. Full- length fusion gene was amplified and subsequent phylogenetic analysis was performed. Experimental inoculation of 3-week old chicken with the isolate resulted in virulent ND. Expression of cytokine mRNA levels in spleen of infected chicken at different time points correlated well with the clinical picture, gross and histopathological lesions.Result: To our knowledge this is the first evidence for the role of apparently healthy emu bird acting as a reservoir of velogenic AAvV-1 of subgenotype XIII 2.2 which proved to be highly virulent to chicken. This study further highlights the role of reservoir birds in AAvV-1 transmission and the need for adopting most realistic strategies in counteracting the disease.


2021 ◽  
Vol 25 (5) ◽  
pp. 445-455
Author(s):  
Naohiro Takahashi ◽  
Hiroaki Kikuchi ◽  
Ayaka Usui ◽  
Taisuke Furusho ◽  
Takuya Fujimaru ◽  
...  

Abstract Background Lipid-metabolizing enzymes and their metabolites affect inflammation and fibrosis, but their roles in chronic kidney disease (CKD) have not been completely understood. Methods To clarify their role in CKD, we measured the mRNA levels of major lipid-metabolizing enzymes in 5/6 nephrectomized (Nx) kidneys of C57BL/6 J mice. Mediator lipidomics was performed to reveal lipid profiles of CKD kidneys. Results In 5/6 Nx kidneys, both mRNA and protein levels of Alox15 were higher when compared with those in sham kidneys. With respect to in situ hybridization, the mRNA level of Alox15 was higher in renal tubules of 5/6 Nx kidneys. To examine the role of Alox15 in CKD pathogenesis, we performed 5/6 Nx on Alox15−/− mice. Alox15−/− CKD mice exhibited better renal functions than wild-type mice. Interstitial fibrosis was also inhibited in Alox15−/− CKD mice. Mediator lipidomics revealed that Alox15−/− CKD mouse kidneys had significantly higher levels of PGD2 than the control. To investigate the effects of PGD2 on renal fibrosis, we administered PGD2 to TGF-β1-stimulated NRK-52E cells and HK-2 cells, which lead to a dose-dependent suppression of type I collagen and αSMA in both cell lines. Conclusion Increased PGD2 in Alox15−/− CKD mouse kidneys could inhibit fibrosis, thereby resulting in CKD improvement. Thus, Alox15 inhibition and PGD2 administration may be novel therapeutic targets for CKD.


2021 ◽  
Vol 22 (8) ◽  
pp. 4152
Author(s):  
Ting-Ting Sheu ◽  
Bor-Luen Chiang

Immune homeostasis is a tightly regulated system that is critical for defense against invasion by foreign pathogens and protection from self-reactivity for the survival of an individual. How the defects in this system might result in autoimmunity is discussed in this review. Reduced lymphocyte number, termed lymphopenia, can mediate lymphopenia-induced proliferation (LIP) to maintain peripheral lymphocyte numbers. LIP not only occurs in normal physiological conditions but also correlates with autoimmunity. Of note, lymphopenia is also a typical marker of immune aging, consistent with the fact that not only the autoimmunity increases in the elderly, but also autoimmune diseases (ADs) show characteristics of immune aging. Here, we discuss the types and rates of LIP in normal and autoimmune conditions, as well as the coronavirus disease 2019 in the context of LIP. Importantly, although the causative role of LIP has been demonstrated in the development of type 1 diabetes and rheumatoid arthritis, a two-hit model has suggested that the factors other than lymphopenia are required to mediate the loss of control over homeostasis to result in ADs. Interestingly, these factors may be, if not totally, related to the function/number of regulatory T cells which are key modulators to protect from self-reactivity. In this review, we summarize the important roles of lymphopenia/LIP and the Treg cells in various autoimmune conditions, thereby highlighting them as key therapeutic targets for autoimmunity treatments.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Asad Ur Rehman ◽  
Mohammad Askandar Iqbal ◽  
Real Sumayya Abdul Sattar ◽  
Snigdha Saikia ◽  
Mohammad Kashif ◽  
...  

Abstract Background Runt related transcription factor3 (RUNX3) is considered as a tumor suppressor gene (TSG) that functions through the TGF-β dependent apoptosis. Promoter methylation of the CpG islands of RUNX3 and overexpression of enhancer of zeste homolog 2 (EZH2) has been suggested to downregulate RUNX3 in cancer. Methods Here, we studied the expression of RUNX3 and EZH2 in 58 esophageal tumors along with paired adjacent normal tissue. mRNA levels, protein expressions and cellular localizations of EZH2 and RUNX3 were analyzed using real-time PCR and immunohistochemistry, respectively. DNA methylation was further assessed by the methylation specific-PCR. Results Compared to normal tissue, a significant increase in expression of RUNX3 mRNA in 31/57 patient’s tumor tissue (p < 0.04) was observed. The expression of EZH2 was found to be upregulated compared to normal, and a significant positive correlation between EZH2 and RUNX3 expression was observed (p = 0.002). 22 of the 27 unmethylated cases at the promoter region of the RUNX3 had elevated RUNX3 protein expression (p < 0.001). Conclusion The data presented in this study provide new insights into the biology of RUNX3 and highlights the need to revisit our current understanding of the role of RUNX3 in cancer.


2007 ◽  
Vol 293 (5) ◽  
pp. E1443-E1450 ◽  
Author(s):  
Alina Silaghi ◽  
Vincent Achard ◽  
Odile Paulmyer-Lacroix ◽  
Traian Scridon ◽  
Virginie Tassistro ◽  
...  

Epicardial white adipose tissue (eWAT) is in close contact with coronary vessels and therefore could alter coronary homeostasis. Adrenomedullin (AM) is a potent vasodilatator and antioxidative peptide which has been shown to play a cytoprotective role in experimental models of acute myocardial infarction. We studied, using immunohistochemistry and qRT-PCR, the expression of AM and its receptors calcitonin receptor-like receptor (CRLR), and receptor activity-modifying protein (RAMP)2 and -3 in paired biopsies of subcutaneous WAT (sWAT) and eWAT obtained from patients with coronary artery disease (CAD) or without CAD (NCAD). In eWAT obtained from NCAD or CAD patients, immunoreactivity for AM, CRLR, and RAMP2 and -3 was detected in blood vessel walls and isolated stromal cells close to adipocytes. Some of the AM positive stromal cells colocalized CD68 immunoreactivity. eWAT from CAD patients showed increased AM immunoreactivity and AM gene expression. CRLR mRNA levels were comparable in sWAT of both groups and decreased by 40–50% in eWAT, irrespectively of the coronary status. RAMP2 mRNA concentrations did not change while RAMP3 mRNA levels increased in sWAT from CAD patients. There was a positive linear relationship between eWAT 11β-hydroxysteroid dehydrogenase type 1 mRNA (11β-HSD-1, the enzyme that converts inactive to active glucocorticoids) and AM mRNA. In conclusion, we demonstrate that AM and its receptors are expressed in eWAT. Our data suggest that eWAT AM, which could originate from macrophages, is related to 11β-HSD-1 expression. AM synthesis, which is increased in eWAT during chronic CAD in humans, can play a cardioprotective role.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
YuanYuan Wang ◽  
Li Wang ◽  
Yue Chen ◽  
Lin Li ◽  
XuanTao Yang ◽  
...  

ER81 is a transcription factor that may contribute to breast cancer; however, little known about the role of ER81 in breast carcinogenesis. To investigate the role of ER81 in breast carcinogenesis, we examined ER81 expression in IDC, DCIS, ADH, HUT, and normal breast tissues by immunohistochemical staining. We found that ER81 overexpression was detected in 25.7% (9/35) of HUT, 41.2% (7/17) of ADH, 54.5% (12/22) of DCIS, and 63.0% (51/81) of IDC. In 20 of breast cancer tissues combined with DCIS, ADH, and HUT, ER81 expression was found in 14/20 (70%) IDC. In these 14 cases all cases were ER81 positive expression in DCIS, 13 of 14 cases were positively expressed of ER81 in ADH and 8 of 14 were positive for ER81 in HUT components. A statistical significance was found between NBT and HUT () and HUT and ADH (). Clinical-pathological features analysis of breast cancer revealed that ER81 expression was significantly associated with Her2 amplification and was negatively associated with ER and PR expression. Our results demonstrated that ER81 overexpression was present in the early stage of breast development that suggested that ER81 overexpression may play an important role in breast carcinogenesis.


2021 ◽  
Author(s):  
Antara Sengupta ◽  
Raja Banerjee

AbstractAt recent age breast cancer attracts the attention of both the medical and the scientific community for its deadly occurrence throughout the globe as it is considered to be happened due to genetic aberration. Out of several genes expressed, it is found that cadherin 1, type 1 (CDH1) is responsible in several ways to control the metabolic order in human. Hence we focus on CDH1 gene whether any deviation in it especially alteration/modification in its sequence is responsible for the occurrence of this deadly disease. Towards this end study of the available genomic sequences of CDH1 gene of several patients, suffering from various types of breast cancer (obtained from the Sanger Database), are studied. The results emphasizes that alternation/modification in the sequence of the CDH1 gene affect its regular function which may have a potential role in damaging the different types of breast tissues, causing malfunction and leading to breast cancers in patients.


Sign in / Sign up

Export Citation Format

Share Document