scholarly journals Cross Talk of Signaling Pathways in the Regulation of the Glucocorticoid Receptor Function

2008 ◽  
Vol 22 (6) ◽  
pp. 1331-1344 ◽  
Author(s):  
Laura Davies ◽  
Nirupama Karthikeyan ◽  
James T. Lynch ◽  
Elin-Alia Sial ◽  
Areti Gkourtsa ◽  
...  

Abstract Several posttranslational modifications including phosphorylation have been detected on the glucocorticoid receptor (GR). However, the interdependence and combinatorial regulation of these modifications and their role in GR functions are poorly understood. We studied the effects of c-Jun N-terminal kinase (JNK)-dependent phosphorylation of GR on its sumoylation status and the impact that these modifications have on GR transcriptional activity. GR is targeted for phosphorylation at serine 246 (S246) by the JNK protein family in a rapid and transient manner. The levels of S246 phosphorylation of endogenous GR increased significantly in cells treated with UV radiation that activates JNK. S246 GR phosphorylation by JNK facilitated subsequent GR sumoylation at lysines 297 and 313. GR sumoylation increased with JNK activation and was inhibited in cells treated with JNK inhibitor. GR sumoylation in cells with activated JNK was mediated preferentially by small ubiquitin-like modifier (SUMO)2 rather than SUMO1. An increase in GR transcriptional activity was observed after inhibition of JNK or SUMO pathways and suppression of GR transcriptional activity after activation of both pathways in cells transfected with GR-responsive reporter genes. Endogenous GR transcriptional activity was inhibited on endogenous target genes IGF binding protein (IGFBP) and glucocorticoid-induced leucine zipper (GILZ) when JNK and SUMO pathways were induced individually or simultaneously. Activation of both of these signals inhibited GR-mediated regulation of human inhibitor of apoptosis gene (hIAP), whereas simultaneous activation had no effect. We conclude that phosphorylation aids GR sumoylation and that cross talk of JNK and SUMO pathways fine tune GR transcriptional activity in a target gene-specific manner, thereby modulating the hormonal response of cells exposed to stress.

2008 ◽  
Vol 22 (8) ◽  
pp. 1754-1766 ◽  
Author(s):  
Weiwei Chen ◽  
Thoa Dang ◽  
Raymond D. Blind ◽  
Zhen Wang ◽  
Claudio N. Cavasotto ◽  
...  

Abstract The glucocorticoid receptor (GR) is phosphorylated at multiple sites within its N terminus (S203, S211, S226), yet the role of phosphorylation in receptor function is not understood. Using a range of agonists and GR phosphorylation site-specific antibodies, we demonstrated that GR transcriptional activation is greatest when the relative phosphorylation of S211 exceeds that of S226. Consistent with this finding, a replacement of S226 with an alanine enhances GR transcriptional response. Using a battery of compounds that perturb different signaling pathways, we found that BAPTA-AM, a chelator of intracellular divalent cations, and curcumin, a natural product with antiinflammatory properties, reduced hormone-dependent phosphorylation at S211. This change in GR phosphorylation was associated with its decreased nuclear retention and transcriptional activation. Molecular modeling suggests that GR S211 phosphorylation promotes a conformational change, which exposes a novel surface potentially facilitating cofactor interaction. Indeed, S211 phosphorylation enhances GR interaction with MED14 (vitamin D receptor interacting protein 150). Interestingly, in U2OS cells expressing a nonphosphorylated GR mutant S211A, the expression of IGF-binding protein 1 and interferon regulatory factor 8, both MED14-dependent GR target genes, was reduced relative to cells expressing wild-type receptor across a broad range of hormone concentrations. In contrast, the induction of glucocorticoid-induced leucine zipper, a MED14-independent GR target, was similar in S211A- and wild-type GR-expressing cells at high hormone levels, but was reduced in S211A cells at low hormone concentrations, suggesting a link between GR phosphorylation, MED14 involvement, and receptor occupancy. Phosphorylation also affected the magnitude of repression by GR in a gene-selective manner. Thus, GR phosphorylation at S211 and S226 determines GR transcriptional response by modifying cofactor interaction. Furthermore, the effect of GR S211 phosphorylation is gene specific and, in some cases, dependent upon the amount of activated receptor.


2006 ◽  
Vol 20 (3) ◽  
pp. 560-572 ◽  
Author(s):  
Weiwei Chen ◽  
Inez Rogatsky ◽  
Michael J. Garabedian

Abstract The Mediator subunits MED14 and MED1 have been implicated in transcriptional regulation by the glucocorticoid receptor (GR) by acting through its activation functions 1 and 2. To understand the contribution of these Mediator subunits to GR gene-specific regulation, we reduced the levels of MED14 and MED1 using small interfering RNAs in U2OS-hGR osteosarcoma cells and examined the mRNA induction by dexamethasone of four primary GR target genes, interferon regulatory factor 8 (IRF8), ladinin 1, IGF-binding protein 1 (IGFBP1), and glucocorticoid-inducible leucine zipper (GILZ). We found that the GR target genes differed in their requirements for MED1 and MED14. GR-dependent mRNA expression of ladinin 1 and IRF8 required both MED1 and MED14, whereas induction of IGFBP1 mRNA by the receptor was dependent upon MED14, but not MED1. In contrast, GILZ induction by GR was largely independent of MED1 and MED14, but required the p160 cofactor transcriptional intermediary factor 2. Interestingly, we observed higher GR occupancy at GILZ than at the IGFBP1 or IRF8 glucocorticoid response element (GREs). In contrast, recruitment of MED14 compared with GR at IGFBP1 and IRF8 was higher than that observed at GILZ. At GILZ, GR and RNA polymerase II were recruited to both the GRE and the promoter, whereas at IGFBP1, RNA polymerase II occupied the promoter, but not the GRE. Thus, MED14 and MED1 are used by GR in a gene-specific manner, and the requirement for the Mediator at GILZ may be bypassed by increased GR and RNA polymerase II occupancy at the GREs. Our findings suggest that modulation of the Mediator subunit activities would provide a mechanism for promoter selectivity by GR.


2008 ◽  
Vol 22 (11) ◽  
pp. 2433-2447 ◽  
Author(s):  
Romain Gineste ◽  
Audrey Sirvent ◽  
Réjane Paumelle ◽  
Stéphane Helleboid ◽  
Alexis Aquilina ◽  
...  

Abstract The farnesoid X receptor (FXR, NR1H4) belongs to the nuclear receptor superfamily and is activated by bile acids such as chenodeoxycholic acid, or synthetic ligands such as GW4064. FXR is implicated in the regulation of bile acid, lipid, and carbohydrate metabolism. Posttranslational modifications regulating its activity have not been investigated yet. Here, we demonstrate that calcium-dependent protein kinase C (PKC) inhibition impairs ligand-mediated regulation of FXR target genes. Moreover, in a transactivation assay, we show that FXR transcriptional activity is modulated by PKC. Furthermore, phorbol 12-myristate 13-acetate , a PKC activator, induces the phosphorylation of endogenous FXR in HepG2 cells and PKCα phosphorylates in vitro FXR in its DNA-binding domain on S135 and S154. Mutation of S135 and S154 to alanine residues reduces in cell FXR phosphorylation. In contrast to wild-type FXR, mutant FXRS135AS154A displays an impaired PKCα-induced transactivation and a decreased ligand-dependent FXR transactivation. Finally, phosphorylation of FXR by PKC promotes the recruitment of peroxisomal proliferator-activated receptor γ coactivator 1α. In conclusion, these findings show that the phosphorylation of FXR induced by PKCα directly modulates the ability of agonists to activate FXR.


2009 ◽  
Vol 23 (11) ◽  
pp. 1746-1757 ◽  
Author(s):  
Hyereen Kang ◽  
Yoon Suk Kim ◽  
Jesang Ko

Abstract The human leucine zipper protein (LZIP) is a basic leucine zipper transcription factor that is involved in leukocyte migration, tumor suppression, and endoplasmic reticulum stress-associated protein degradation. Although evidence suggests a diversity of roles for LZIP, its function is not fully understood, and the subcellular localization of LZIP is still controversial. We identified a novel isoform of LZIP and characterized its function in ligand-induced transactivation of the glucocorticoid receptor (GR) in COS-7 and HeLa cells. A novel isoform of human LZIP designated as “sLZIP” contains a deleted putative transmembrane domain (amino acids 229–245) of LZIP and consists of 345 amino acids. LZIP and sLZIP were ubiquitously expressed in a variety of cell lines and tissues, with LZIP being much more common. sLZIP was mainly localized in the nucleus, whereas LZIP was located in the cytoplasm. Unlike LZIP, sLZIP was not involved in the chemokine-mediated signal pathway. sLZIP recruited histone deacetylases (HDACs) to the promoter region of the mouse mammary tumor virus luciferase reporter gene and enhanced the activities of HDACs, resulting in suppression of expression of the GR target genes. Our findings suggest that sLZIP functions as a negative regulator in glucocorticoid-induced transcriptional activation of GR by recruitment and activation of HDACs.


2012 ◽  
Vol 90 (3) ◽  
pp. 307-319 ◽  
Author(s):  
Christophe Mariller ◽  
Stephan Hardivillé ◽  
Esthelle Hoedt ◽  
Isabelle Huvent ◽  
Socorro Pina-Canseco ◽  
...  

Delta-lactoferrin (ΔLf) is a transcription factor of which the expression is downregulated in cancer. It is a healthy tissue marker and a high expression level of its transcripts was correlated with a good prognosis in breast cancer. ΔLf results from alternative promoter usage of the hLf gene leading to the production of 2 isoforms with alternative N-termini: lactoferrin, which is secreted, and ΔLf, its nucleocytoplasmic counterpart. ΔLf possesses antiproliferative properties and induces cell cycle arrest. It is an efficient transcription factor interacting in vivo via a ΔLf response element found in the Skp1, Bax, DcpS, and SelH promoters. Since ΔLf possesses different target genes, modifications in its activity or concentration may have crucial effects on cell homeostasis. Posttranslational modifications modulate ΔLf transcription factor activity. Our earlier investigations showed that O-GlcNAcylation negatively regulates ΔLf transcriptional activity, whilst inhibiting its ubiquitination and increasing its half-life. On the other hand, phosphorylation potentiates ΔLf transcriptional activity. Recently, we showed that ΔLf is also modified by SUMOylation. Therefore, cooperation and (or) competition among SUMOylation, ubiquitination, phosphorylation, and O-GlcNAcylation may contribute to the establishment of a fine regulation of ΔLf transcriptional activity depending on the type of target gene and cellular homeostasis.


2015 ◽  
Vol 36 (6) ◽  
pp. 2274-2286 ◽  
Author(s):  
Jun Zhang ◽  
He-da Zhang ◽  
Yu-Feng Yao ◽  
Shan-Liang Zhong ◽  
Jian Hua Zhao ◽  
...  

Background: Currently, exosomes that act as mediators of intercellular communication are being researched extensively. Our previous studies confirmed that these exosomes contain microRNAs (miRNAs) that could alter chemo-susceptibility, which is partly attributed to the successful intercellular transfer of multidrug resistance (MDR)-specific miRNAs. We also confirmed that β-elemene could influence MDR-related miRNA expression and regulate the expression of the target genes PTEN and Pgp, which may lead to the reversal of the chemoresistant breast cancer (BCA) cells. We are the first to report these findings, and we propose the following logical hypothesis: β-elemene can mediate MDR-related miRNA expression in cells, thereby affecting the exosome contents, reducing chemoresistance transmission via exosomes, and reversing the drug resistance of breast cancer cells. Methods: MTT-cytotoxic, miRNA microarray, real-time quantitative PCR, Dual Luciferase Activity Assay, and Western blot analysis were performed to investigate the impact of β-elemene on the expression of chemoresistance specific miRNA and PTEN as well as Pgp in chemoresistant BCA exosomes. Results: Drug resistance can be reversed by β-elemene related to exosomes. There were 104 differentially expressed miRNAs in the exosomes of two chemoresistant BCA cells: adriacin (Adr) - resistant MCF-7 cells (MCF-7/Adr) and docetaxel (Doc) - resistant MCF-7 cells (MCF-7/Doc) that underwent treatment. Of these, 31 miRNAs were correlated with the constant changes in the MDR. The expression of miR-34a and miR-452 can lead to changes in the characteristics of two chemoresistant BCA exosomes: MCF-7/Adr exosomes (A/exo) and MCF-7/Doc exosomes (D/exo). The PTEN expression affected by β-elemene was significantly increased, and the Pgp expression affected by β-elemene was significantly decreased in both cells and exosomes. β-elemene induced a significant increase in the apoptosis rate in both MCF-7/Doc and MCF-7/Adr cells. Conclusions: Drug resistance can be reversed by β-elemene, which can alter the expression of some MDR-related miRNAs, including PTEN and Pgp in MCF-7/Adr and MCF-7/Doc in cells. It can therefore affect the exosome contents and induce the reduction of resistance transmission via exosomes.


Author(s):  
A.B.M. Kaiser Manjur ◽  
Joanna K. Lempiäinen ◽  
Marjo Malinen ◽  
Markku Varjosalo ◽  
Jorma J. Palvimo ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3026
Author(s):  
Carlos Daniel Zappia ◽  
Valeria Torralba-Agu ◽  
Emiliana Echeverria ◽  
Carlos P. Fitzsimons ◽  
Natalia Fernández ◽  
...  

Antihistamines and glucocorticoids (GCs) are often used together in the clinic to treat several inflammation-related situations. Although there is no rationale for this association, clinical practice has assumed that, due to their concomitant anti-inflammatory effects, there should be an intrinsic benefit to their co-administration. In this work, we evaluated the effects of the co-treatment of several antihistamines on dexamethasone-induced glucocorticoid receptor transcriptional activity on the expression of various inflammation-related genes in A549 and U937 cell lines. Our results show that all antihistamines potentiate GCs’ anti-inflammatory effects, presenting ligand-, cell- and gene-dependent effects. Given that treatment with GCs has strong adverse effects, particularly on bone metabolism, we also examined the impact of antihistamine co-treatment on the expression of bone metabolism markers. Using MC3T3-E1 pre-osteoblastic cells, we observed that, though the antihistamine azelastine reduces the expression of dexamethasone-induced bone loss molecular markers, it potentiates osteoblast apoptosis. Our results suggest that the synergistic effect could contribute to reducing GC clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage, as the addition of an antihistamine may reinforce the wanted effects of GCs, while related adverse effects could be diminished or at least mitigated. By modulating the patterns of gene activation/repression mediated by GR, antihistamines could enhance only the desired effects of GCs, allowing their effective dose to be reduced. Further research is needed to correctly determine the clinical scope, benefits, and potential risks of this therapeutic strategy.


2021 ◽  
Author(s):  
Chun Yang ◽  
Stéphane Croteau ◽  
Pierre Hardy

Abstract Background HDAC9 (histone deacetylase 9) belongs to the class IIa family of histone deacetylases. This enzyme can shuttle freely between the nucleus and cytoplasm and promotes tissue-specific transcriptional regulation by interacting with histone and non-histone substrates. HDAC9 plays an essential role in diverse physiological processes including cardiac muscle development, bone formation, adipocyte differentiation and innate immunity. HDAC9 inhibition or activation is therefore a promising avenue for therapeutic intervention in several diseases. HDAC9 overexpression is also common in cancer cells, where HDAC9 alters the expression and activity of numerous relevant proteins involved in carcinogenesis. Conclusions This review summarizes the most recent discoveries regarding HDAC9 as a crucial regulator of specific physiological systems and, more importantly, highlights the diverse spectrum of HDAC9-mediated posttranslational modifications and their contributions to cancer pathogenesis. HDAC9 is a potential novel therapeutic target, and the restoration of aberrant expression patterns observed among HDAC9 target genes and their related signaling pathways may provide opportunities to the design of novel anticancer therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document