Cerebrospinal Fluid Eosinophilia and Sterile Shunt Malfunction

Neurosurgery ◽  
1988 ◽  
Vol 23 (5) ◽  
pp. 645-649 ◽  
Author(s):  
Vincent C. Traynelis ◽  
Randell G. Powell ◽  
William Koss ◽  
Sydney S. Schochet ◽  
Howard H. Kaufman

Abstract Cerebrospinal fluid (CSF) eosinophilia is a rare finding most often associated with central nervous system inflammatory processes, including parasitic, bacterial, and mycotic infections. It has also been seen as an allergic phenomenon. We present two cases of CSF eosinophilia occurring concurrently with sterile shunt malfunction. We speculate that CSF eosinophilia in our patients might have resulted from an allergic response to a foreign material such as suture, surgical glove powder, hair, cotton fibers, antibiotics, or silicone rubber. The incidence of sterile CSF eosinophilia after shunting is not known. Information concerning the role of eosinophilia in the development of shunt malfunctions is also lacking. An increased awareness of this possibility and further investigation are warranted.

2001 ◽  
Vol 280 (2) ◽  
pp. E349-E356 ◽  
Author(s):  
Noreen F. Rossi ◽  
Haiping Chen

Endothelin (ET) acts within the central nervous system to increase arterial pressure and arginine vasopressin (AVP) secretion. This study assessed the role of the paraventricular nuclei (PVN) in these actions. Intracerebroventricular ET-1 (10 pmol) or the ETA antagonist BQ-123 (40 nmol) was administered in conscious intact or sinoaortic-denervated (SAD) Long-Evans rats with sham or bilateral electrolytic lesions of the magnocellular region of the PVN. Baseline values did not differ among groups, and artificial cerebrospinal fluid (CSF) induced no significant changes. In sham-lesioned rats, ET-1 increased mean arterial pressure (MAP) 15.9 ± 1.3 mmHg in intact and 22.3 ± 2.7 mmHg in SAD ( P < 0.001 ET-1 vs. CSF) rats. PVN lesions abolished the rise in MAP: −0.1 ± 2.8 mmHg in intact and 0.0 ± 2.9 mmHg in SAD. AVP increased in only in the sham-lesioned SAD group 8.6 ± 3.5 pg/ml ( P < 0.001 ET-1 vs. CSF). BQ-123 blocked the responses. Thus the integrity of the PVN is required for intracerebroventricularly administered ET-1 to exert pressor and AVP secretory effects.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 137 ◽  
Author(s):  
Antonia Cianciulli ◽  
Chiara Porro ◽  
Rosa Calvello ◽  
Teresa Trotta ◽  
Dario Domenico Lofrumento ◽  
...  

Immune activation in the central nervous system involves mostly microglia in response to pathogen invasion or tissue damage, which react, promoting a self-limiting inflammatory response aimed to restore homeostasis. However, prolonged, uncontrolled inflammation may result in the production by microglia of neurotoxic factors that lead to the amplification of the disease state and tissue damage. In particular, specific inducers of inflammation associated with neurodegenerative diseases activate inflammatory processes that result in the production of a number of mediators and cytokines that enhance neurodegenerative processes. Phosphoinositide 3-kinases (PI3Ks) constitute a family of enzymes regulating a wide range of activity, including signal transduction. Recent studies have focused attention on the intracellular role of PI3K and its contribution to neurodegenerative processes. This review illustrates and discusses recent findings about the role of this signaling pathway in the modulation of microglia neuroinflammatory responses linked to neurodegeneration. Finally, we discuss the modulation of PI3K as a potential therapeutic approach helpful for developing innovative therapeutic strategies in neurodegenerative diseases.


1937 ◽  
Vol 33 (5) ◽  
pp. 523-532
Author(s):  
L. S. Stern

Evaluation of the results obtained in the study of the effect of cerebrospinal fluid on various physiological systems is complicated by the fact that the composition of the cerebrospinal fluid depends to a large extent on the state of the blood-brain barrier, and thus reflects not only a certain physiological state of the central nervous system. There is no doubt that the metabolic products of the brain, secreted into the cerebrospinal fluid, exert their effect not only on the activity of various parts of the brain and on the coordination of their functions, but due to the rapid transition of these substances from the cerebrospinal fluid into the general circulation, they also affect as a humoral a factor on the function of other physiological systems, as it was revealed in a number of experiments carried out in recent years in our laboratories. For example, it turned out that under various influences (direct irritation of the central nervous system in experimental epilepsy, irritation of the sensory nerves associated with severe pain, traumatic shock, toxemic or chemical shock, as well as starvation, prolonged insomnia, etc.) - substances appear in the cerebrospinal fluid that affect the state and activity of the cardiovascular system, the tone of smooth muscles, the excitability of the central nervous system, etc. These are the results of the work of our employees: Zeitlin, Weiss, Harles, Voskresensky, Gromakovskaya , Bazarova, Gotsman, Komarova and others. Work in this direction continues at the present time.


2005 ◽  
Vol 5 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Annamaria Vezzani

In recent years, increasing evidence has indicated that immune and inflammatory reactions occur in brain in various central nervous system (CNS) diseases. Furthermore, inflammatory processes, such as the production of proinflammatory cytokines and related molecules, have been described in brain after seizures induced in experimental models and in clinical cases of epilepsy. Although little is known about the role of inflammation in epilepsy, it has been hypothesized that activation of the innate immune system and associated inflammatory reactions in brain may mediate some of the molecular and structural changes occurring during and after seizure activity. Whether the innate immune response that takes place in epileptic tissue is beneficial or noxious to the CNS is still an open and intriguing question that should be addressed by further investigations.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Wenjing Cheng ◽  
Guangjie Chen

Multiple sclerosis is an autoimmune disease with classical traits of demyelination, axonal damage, and neurodegeneration. The migration of autoimmune T cells and macrophages from blood to central nervous system as well as the destruction of blood brain barrier are thought to be the major processes in the development of this disease. Chemokines, which are small peptide mediators, can attract pathogenic cells to the sites of inflammation. Each helper T cell subset expresses different chemokine receptors so as to exert their different functions in the pathogenesis of MS. Recently published results have shown that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients. This review describes the advanced researches on the role of chemokines and chemokine receptors in the development of MS and discusses the potential therapy of this disease targeting the chemokine network.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Daniel Appelgren ◽  
Helena Enocsson ◽  
Barbro H. Skogman ◽  
Marika Nordberg ◽  
Linda Perander ◽  
...  

Neutrophils operate as part of the innate defence in the skin and may eliminate the Borrelia spirochaete via phagocytosis, oxidative bursts, and hydrolytic enzymes. However, their importance in Lyme neuroborreliosis (LNB) is unclear. Neutrophil extracellular trap (NET) formation, which is associated with the production of reactive oxygen species, involves the extrusion of the neutrophil DNA to form traps that incapacitate bacteria and immobilise viruses. Meanwhile, NET formation has recently been studied in pneumococcal meningitis, the role of NETs in other central nervous system (CNS) infections has previously not been studied. Here, cerebrospinal fluid (CSF) samples from clinically well-characterised children (N = 111) and adults (N = 64) with LNB and other CNS infections were analysed for NETs (DNA/myeloperoxidase complexes) and elastase activity. NETs were detected more frequently in the children than the adults (p = 0.01). NET presence was associated with higher CSF levels of CXCL1 (p < 0.001), CXCL6 (p = 0.007), CXCL8 (p = 0.003), CXCL10 (p < 0.001), MMP-9 (p = 0.002), TNF (p = 0.02), IL-6 (p < 0.001), and IL-17A (p = 0.03). NETs were associated with fever (p = 0.002) and correlated with polynuclear pleocytosis (rs = 0.53, p < 0.0001). We show that neutrophil activation and active NET formation occur in the CSF samples of children and adults with CNS infections, mainly caused by Borrelia and neurotropic viruses. The role of NETs in the early phase of viral/bacterial CNS infections warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document