The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling

Development ◽  
2001 ◽  
Vol 128 (21) ◽  
pp. 4251-4264 ◽  
Author(s):  
Ruben D. Artero ◽  
Irinka Castanon ◽  
Mary K. Baylies

Hibris (Hbs) is a transmembrane immunoglobulin-like protein that shows extensive homology to Drosophila Sticks and stones (Sns) and human kidney protein Nephrin. Hbs is expressed in embryonic visceral, somatic and pharyngeal mesoderm among other tissues. In the somatic mesoderm, Hbs is restricted to fusion competent myoblasts and is regulated by Notch and Ras signaling pathways. Embryos that lack or overexpress hbs show a partial block of myoblast fusion, followed by abnormal muscle morphogenesis. Abnormalities in visceral mesoderm are also observed. In vivo mapping of functional domains suggests that the intracellular domain mediates Hbs activity. Hbs and its paralog, Sns, co-localize at the cell membrane of fusion-competent myoblasts. The two proteins act antagonistically: loss of sns dominantly suppresses the hbs myoblast fusion and visceral mesoderm phenotypes, and enhances Hbs overexpression phenotypes. Data from a P-homed enhancer reporter into hbs and co-localization studies with Sns suggest that hbs is not continuously expressed in all fusion-competent myoblasts during the fusion process. We propose that the temporal pattern of hbs expression within fusion-competent myoblasts may reflect previously undescribed functional differences within this myoblast population.

1988 ◽  
Vol 252 (1) ◽  
pp. 301-304 ◽  
Author(s):  
W H Baricos ◽  
Y Zhou ◽  
R W Mason ◽  
A J Barrett

Cathepsins B and L were purified from human kidney. SDS/polyacrylamide-gel electrophoresis demonstrated that cathepsins B and L, Mr 27000-30000, consist of disulphide-linked dimers, subunit Mr values 22000-25000 and 5000-7000. The pH optimum for the hydrolysis of methylcoumarylamide (-NHMec) substrates (see below) is approx. 6.0 for each enzyme. Km and kcat. are 252 microM and 364s-1 and 2.2 microM and 25.8 s-1 for the hydrolysis of Z-Phe-Arg-NHMec (where Z- represents benzyloxycarbonyl-) by cathepsins B and L respectively, and 184 microM and 158 s-1 for the hydrolysis of Z-Arg-Arg-NHMec by cathepsin B. A 10 min preincubation of cathepsin B (40 degrees C) or cathepsin L (30 degrees C) with E-64 (2.5 microM) results in complete inhibition. Under identical conditions Z-Phe-Phe-CHN2 (0.56 microM) completely inhibits cathepsin L but has little effect on cathepsin B. Incubation of glomerular basement membrane (GBM) with purified human kidney cathepsin L resulted in dose-dependent (10-40 nM) GBM degradation. In contrast, little degradation of GBM (less than 4.0%) was observed with cathepsin B. The pH optimum for GBM degradation by cathepsin L was 3.5. Cathepsin L was significantly more active in degrading GBM than was pancreatic elastase, trypsin or bacterial collagenase. These data suggest that cathepsin L may participate in the lysosomal degradation of GBM associated with normal GBM turnover in vivo.


1989 ◽  
Vol 61 (03) ◽  
pp. 463-467 ◽  
Author(s):  
G M Smith

SummaryIn this study, 5-hydroxytryptamine (5-HT) caused a dose- dependent fall in the circulating platelet count suggesting that 5-HT receptors are activated in rat platelets to cause platelet adhesion and aggregation. When low doses of adenosine diphosphate (ADP) were simultaneously injected with 5-HT, there was a significant potentiation of the responses to ADR Ketanserin significantly reduced the potentiated responses. When higher doses of ADP were infused with bolus injections of 5-HT there was no potentiation and ketanserin did not reduce these responses. Ketanserin did not inhibit the collagen-induced fall in circulating platelet count, but did significantly increase the rate of return to the basal platelet count compared with control. 5-HT did not cause a fall in platelet count in guinea-pigs


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


1986 ◽  
Vol 56 (02) ◽  
pp. 147-150 ◽  
Author(s):  
V Pengo ◽  
M Boschello ◽  
A Marzari ◽  
M Baca ◽  
L Schivazappa ◽  
...  

SummaryA brief contact between native whole blood and ADP promotes a dose-dependent release of platelet a-granules without a fall in the platelet number. We assessed the “ex vivo” effect of three widely used antiplatelet drugs, aspirin dipyridamole and ticlopidine, on this system. Aspirin (a single 800 mg dose) and dipyridamole (300 mg/die for four days) had no effect, while ticlopidine (500 mg/die for four days) significantly reduced the a-granules release for an ADP stimulation of 0.4 (p <0.02), 1.2 (p <0.01) and 2 pM (p <0.01). No drug, however, completeley inhibits this early stage of platelet activation. The platelet release of α-granules may be related to platelet shape change of the light transmission aggregometer and may be important “in vivo” by enhancing platelet adhesiveness and by liberating the plateletderived growth factor.


2019 ◽  
Vol 16 (3) ◽  
pp. 175-180
Author(s):  
Fengjin Hao ◽  
Yueqin Feng ◽  
Yifu Guan

Objective: To verify whether the botulinum toxin heavy chain HCS has specific neuronal targeting function and to confirm whether TAT-EGFP-LC has hydrolyzable SNAP-25 and has transmembrane biological activity. Methods: We constructed the pET-28a-TAT-EGFP-HCS/LC plasmid. After the plasmid is expressed and purified, we co-cultured it with nerve cells or tumors. In addition, we used Western-Blot to identify whether protein LC and TAT-EGFP-LC can digest the protein SNAP-25. Results: Fluorescence imaging showed that PC12, BV2, C6 and HeLa cells all showed green fluorescence, and TAT-EGFP-HCS had the strongest fluorescence. Moreover, TAT-EGFP-LC can hydrolyze intracellular SNAP-25 in PC12 cells, C6 cells, BV2 cells and HeLa, whereas LC alone cannot. In addition, the in vivo protein TAT-EGFP-HCS can penetrate the blood-brain barrier and enter mouse brain tissue. Conclusion: TAT-EGFP-HSC expressed in vitro has neural guidance function and can carry large proteins across the cell membrane without influencing the biological activity.


Author(s):  
Mohammed Ajebli ◽  
Mohamed Eddouks

Aims and objective: The aim of the study was to investigate the effect of aqueous aerial part extract of Mentha pulegium L. (Pennyrile) (MPAE) on arterial pressure parameters in rats. Background: Mentha pulegium is a medicinal plant used to treat hypertension in Morocco. Material and methods: In the current study, MPAE was prepared and its antihypertensive activity was pharmacologically investigated. L-NAME-hypertensive and normotensive rats have received orally MPAE (180 and 300 mg/kg) during six hours for the acute experiment and during seven days for the sub-chronic treatment. Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. While, in the in vitro experiment, isolated denuded and intact thoracic aortic rings were suspended in a tissue bath system and the tension changes were recorded. Results: A fall in blood pressure was observed in L-NAME-induced hypertensive treated with MPAE. The extract also produced a dose-dependent relaxation of aorta pre-contracted with NE and KCl. The study showed that the vasorelaxant ability of MPAE seems to be exerted through the blockage of extracellular Ca2+ entry. Conclusion: The results demonstrate that the extract of pennyrile exhibits antihypertensive activity. In addition, the effect may be, at least in part, due to dilation of blood vessels via blockage of Ca2+ channels.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Nilutpal Sharma Bora ◽  
Partha Sarathi Bairy ◽  
Abdus Salam ◽  
Bibhuti Bhusan Kakoti

Abstract Background Garcinia lanceifolia Roxb. has been used by many ethnic communities of Northeast India to mitigate various disorders like dyspepsia, ulcers, diabetes, etc. However, a robust scientific study on its antidiabetic and antiulcer potential is unavailable till date. The aim of this present study is to scientifically validate if the antidiabetic and antiulcer effects reported by the ethnic tribes of Assam has any scientific value or not. The effects were tested in adult Wistar albino rats using approved animal models for preclinical testing of pharmacological activities. Results The hydroalcoholic extract of the bark of Garcinia lanceifolia Roxb. was prepared and its LD50 was calculated. The LD50 was determined to be greater than 5000 mg/kg body weight. The extract at doses of 250 mg/kg body weight and 500 mg/kg body weight was found to exhibit a very potent dose-dependent antidiabetic activity. The results were backed by a battery of test including analysis of serum levels of blood glucose, lipid profiles, in vivo antioxidant enzymes, and histopathological studies. Evidence of dose-dependent antiulcer activity of the extract was backed by robust scientific data. It was found that HAEGL induced a significant dose-dependent increase in the ulcer index in both alcohol-induced and acetic acid-induced ulcer models, which was evident from the macroscopic observation of the inner lining of the gastric mucosa and the histological evaluation of the extracted stomach. Conclusion The results suggested that the bark of Garcinia lanceifolia (Roxb.) has significant antidiabetic and antiulcer potential. Further studies with respect to the development herbal dosage forms and its safety evaluation are required.


1990 ◽  
Vol 17 (3) ◽  
pp. 224-227
Author(s):  
Henning F. Bjerregaard

The aim of the present study was to investigate the site and mode of trifluoperazine (TFP) action on cell membrane transport by the use of isolated frog skin. This cellular system gives access to the apical (outer) and basolateral (inner) membranes of the polarised epithelial cells. Both apical and basolateral TFP addition induced a dose-dependent stimulation of Na transport, and depolarised the cellular potential. The data indicate that TFP acts by increasing the Na permeability of the apical membrane. However, the mechanisms localised in the apical and basolateral membranes are quite different. Basolateral TFP addition increased Na transport due to a stimulation of PGE2 synthesis, whereas apical TFP addition abolished Na inhibition of the apical Na channels, and thereby enhanced the Na transport. An acute toxic effect on the electrophysiological parameters was noted after addition of high apical TFP concentrations (50–100μM). This toxic effect was dependent on the presence of Na in the apical solution.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document