scholarly journals The C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory

Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 853-862 ◽  
Author(s):  
Behrooz Esmaeili ◽  
Jennifer M. Ross ◽  
Cara Neades ◽  
David M. Miller ◽  
Julie Ahringer

Locomotory activity is defined by the specification of motoneurone subtypes. In the nematode, C. elegans, DA and DB motoneurones innervate dorsal muscles and function to induce movement in the backwards or forwards direction, respectively. These two neurone classes express separate sets of genes and extend axons with oppositely directed trajectories; anterior (DA) versus posterior (DB). The DA-specific homeoprotein UNC-4 interacts with UNC-37/Groucho to repress the DB gene, acr-5 (nicotinic acetylcholine receptor subunit). We show that the C. elegans even-skipped-like homoedomain protein, VAB-7, coordinately regulates different aspects of the DB motoneurone fate, in part by repressing unc-4. Wild-type DB motoneurones express VAB-7, have posteriorly directed axons, express ACR-5 and lack expression of the homeodomain protein UNC-4. In a vab-7 mutant, ectopic UNC-4 represses acr-5 and induces an anteriorly directed DB axon trajectory. Thus, vab-7 indirectly promotes DB-specific gene expression and posteriorly directed axon outgrowth by preventing UNC-4 repression of DB differentiation. Ectopic expression of VAB-7 also induces DB traits in an unc-4-independent manner, suggesting that VAB-7 can act through a parallel pathway. This work supports a model in which a complementary pair of homeodomain transcription factors (VAB-7 and UNC-4) specifies differences between DA and DB neurones through inhibition of the alternative fates. The recent findings that Even-skipped transcriptional repressor activity specifies neurone identity and axon guidance in the mouse and Drosophila motoneurone circuit points to an ancient origin for homeoprotein-dependent mechanisms of neuronal differentiation in the metazoan nerve cord.

Genetics ◽  
2021 ◽  
Author(s):  
Hana E Littleford ◽  
Karin Kiontke ◽  
David H A Fitch ◽  
Iva Greenwald

Abstract Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. C. elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female Distal Tip Cells (fDTC), while the Anchor Cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position, and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that HLH-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence.


Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2171-2180 ◽  
Author(s):  
J.M. Kalb ◽  
K.K. Lau ◽  
B. Goszczynski ◽  
T. Fukushige ◽  
D. Moons ◽  
...  

The C. elegans Ce-fkh-1 gene has been cloned on the basis of its sequence similarity to the winged-helix DNA binding domain of the Drosophila fork head and mammalian HNF-3alpha, beta, gamma genes, and mutations in the zygotically active pha-4 gene have been shown to block formation of the pharynx (and rectum) at an early stage in embryogenesis. In the present paper, we show that Ce-fkh-1 and pha-4 are the same gene. We show that PHA-4 protein is present in nuclei of essentially all pharyngeal cells, of all five cell types. PHA-4 protein first appears close to the point at which a cell lineage will produce only pharyngeal cells, independently of cell type. We show that PHA-4 binds directly to a ‘pan-pharyngeal enhancer element’ previously identified in the promoter of the pharyngeal myosin myo-2 gene; in transgenic embryos, ectopic PHA-4 activates ectopic myo-2 expression. We also show that ectopic PHA-4 can activate ectopic expression of the ceh-22 gene, a pharyngeal-specific NK-2-type homeodomain protein previously shown to bind a muscle-specific enhancer near the PHA-4 binding site in the myo-2 promoter. We propose that it is the combination of pha-4 and regulatory molecules such as ceh-22 that produces the specific gene expression patterns during pharynx development. Overall, pha-4 can be described as an ‘organ identity factor’, completely necessary for organ formation, present in all cells of the organ from the earliest stages, capable of integrating upstream developmental pathways (in this case, the two distinct pathways that produce the anterior and posterior pharynx) and participating directly in the transcriptional regulation of organ specific genes. Finally, we note that the distribution of PHA-4 protein in C. elegans embryos is remarkably similar to the distribution of the fork head protein in Drosophila embryos: high levels in the foregut/pharynx and hindgut/rectum; low levels in the gut proper. Moreover, we show that pha-4 expression in the C. elegans gut is regulated by elt-2, a C. elegans gut-specific GATA-factor and possible homolog of the Drosophila gene serpent, which influences fork head expression in the fly gut. Overall, our results provide evidence for a highly conserved pathway regulating formation of the digestive tract in all (triploblastic) metazoa.


2020 ◽  
Author(s):  
Seth R Taylor ◽  
Gabriel Santpere ◽  
Alexis Weinreb ◽  
Alec Barrett ◽  
Molly B. Reilly ◽  
...  

SummaryNervous systems are constructed from a deep repertoire of neuron types but the underlying gene expression programs that specify individual neuron identities are poorly understood. To address this deficit, we have produced an expression profile of all 302 neurons of the C. elegans nervous system that matches the single cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses unique codes of ∼23 neuropeptide-encoding genes and ∼36 neuropeptide receptors thus pointing to an expansive “wireless” signaling network. To demonstrate the utility of this uniquely comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression across the nervous system and (2) reveal adhesion proteins with potential roles in synaptic specificity and process placement. These data are available at cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity and function throughout the C. elegans nervous system.


Development ◽  
1998 ◽  
Vol 125 (20) ◽  
pp. 4107-4119 ◽  
Author(s):  
A. Duggan ◽  
C. Ma ◽  
M. Chalfie

The nematode Caenorhabditis elegans possesses six morphologically similar neurons that are responsible for sensing gentle touch to the body. Previous genetic studies identified genes that are necessary for the production and differentiation of these touch cells. In particular, unc-86 encodes a POU-type homeodomain protein needed for the production of the touch cells, while mec-3 encodes a LIM-type homeodomain protein needed for the differentiation of the touch cells. Molecular studies showed that MEC-3 and UNC-86 bind cooperatively to sites in the mec-3 promoter and can synergistically activate transcription from it in vitro. Here we show that UNC-86::MEC-3 hetero-oligomer-binding sites are also found in the promoters of two presumed targets of mec-3, the mec-4 and mec-7 genes, that are necessary for the function of the touch cells. These sites, which are well-conserved in the related nematode C. briggsae, are required for promoter activity. When one of the binding sites is cloned into a heterologous promoter, expression is found in the touch cells and two to four other cells that express mec-3 and unc-86. These data support a model in which touch-cell differentiation is specified, in part, by the UNC-86::MEC-3 hetero-oligomer and not by MEC-3 alone. Ectopic expression of mec-3, driven by a heat-shock promoter, also supports this hypothesis: the acquisition of touch-cell characteristics by several additional cells under these conditions required unc-86. Since the touch-cell lineages express UNC-86 before MEC-3, MEC-3 appears to modify the activity of UNC-86, leading to touch-cell-specific gene expression. Because both UNC-86 and MEC-3 have activation domains, the formation of the hetero-oligomer may create a strong activator. In the modification of UNC-86 function by MEC-3 in the touch cells, these studies provide an example of how the sequential activation of transcription factors can determine cell fate within particular cell lineages.


Development ◽  
2000 ◽  
Vol 127 (15) ◽  
pp. 3361-3371 ◽  
Author(s):  
N. Pujol ◽  
P. Torregrossa ◽  
J.J. Ewbank ◽  
J.F. Brunet

An essential aspect of a neuron's identity is the pattern of its axonal projections. In C. elegans, axons extend either longitudinally or circumferentially in response to distinct molecular cues, some of which have been identified. It is currently unclear, however, how the differential capacity to respond to these cues is transcriptionally implemented in distinct neuronal subtypes. Here, we characterise a C. elegans paired-like homeobox gene, CePhox2/ceh-17, expressed in five head neurons, ALA and the 4 SIAs, all of which project axons towards the tail along the lateral and sublateral cords. Abrogation of ceh-17 function, while leaving intact many phenotypic traits of these neurons, disrupts their antero-posterior axonal elongation beyond the mid-body region. Conversely, ectopic expression of ceh-17 in the mechanoreceptors, several of which are known to pioneer their tract, leads to exaggerated longitudinal axonal outgrowth. Thus, ceh-17 is a novel gene involved in fasciculation-independent longitudinal axonal navigation.


2020 ◽  
Author(s):  
Xinxing Zhang ◽  
Jinzhi Liu ◽  
Jianfeng Liu ◽  
X.Z. Shawn Xu

AbstractBardet-Biedl Syndrome (BBS) is a genetic disorder affecting primary cilia. BBSome, a protein complex composed of eight BBS proteins, regulates the structure and function of cilia in diverse organisms, and its malfunction causes BBS in humans. Here, we report a new function of BBSome in C. elegans. In a forward genetic screen for genes regulating the light sensitivity of the ciliated ASH sensory neurons, we isolated bbs mutants, indicating that BBSome regulates ASH photosensitivity. Surprisingly, cilia are not required for ASH neurons to sense light, suggesting that BBSome regulates ASH photosensitivity independently of cilia. Interestingly, the light-sensing receptor LITE-1, which mediates photosensation, is a non-ciliary protein in ASH neurons. LITE-1 in ASH neurons becomes unstable in bbs mutants in an age-dependent manner, indicating that BBSome regulates the stability of LITE-1 in these neurons. These results identify a cilium-independent function of BBSome in regulating a non-ciliary protein in ciliated cells.


2018 ◽  
Author(s):  
Andreas Rechtsteiner ◽  
Meghan E. Costello ◽  
Thea A. Egelhofer ◽  
Jacob M. Garrigues ◽  
Susan Strome ◽  
...  

Repression of germline-promoting genes in somatic cells is critical for somatic development and function. To study how germline genes are repressed in somatic tissues, we analyzed key histone modifications in three Caenorhabditis elegans synMuv B mutants, lin-15B, lin-35, and lin-37, all of which display ectopic expression of germline genes in the soma. LIN-35 and LIN-37 are members of the conserved DREAM complex. LIN-15B has been proposed to work with the DREAM complex but has not been shown biochemically to be a complex member. We found that in wild-type worms synMuv B target genes and germline genes are enriched for the repressive histone modification dimethylation of histone H3 on lysine 9 (H3K9me2) at their promoters. Genes with H3K9me2 promoter localization are distributed across the autosomes and not biased toward autosomal arms like broad H3K9me2 domains. Both synMuv B targets and germline genes display dramatic reduction of H3K9me2 promoter localization in lin-15B mutants, but much weaker reduction in lin-35 and lin-37 mutants. This is the first major difference reported between lin-15B and DREAM complex mutants, which likely represents a difference in molecular function for these synMuv B proteins. In support of the pivotal role of H3K9me2 in regulation of germline genes through LIN-15B, global loss of H3K9me2 but not H3K9me3 results in phenotypes similar to synMuv B mutants, high temperature larval arrest and ectopic expression of germline genes in the soma. We propose that LIN-15B-driven enrichment of H3K9me2 on promoters of germline genes contributes to repression of those genes in somatic tissues.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


2021 ◽  
Vol 22 (11) ◽  
pp. 5902
Author(s):  
Stefan Nagel ◽  
Claudia Pommerenke ◽  
Corinna Meyer ◽  
Hans G. Drexler

Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Scott Takeo Aoki ◽  
Tina R. Lynch ◽  
Sarah L. Crittenden ◽  
Craig A. Bingman ◽  
Marvin Wickens ◽  
...  

AbstractCytoplasmic RNA–protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein–RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.


Sign in / Sign up

Export Citation Format

Share Document