GATA6 regulates differentiation of distal lung epithelium

Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2233-2246 ◽  
Author(s):  
Honghua Yang ◽  
Min Min Lu ◽  
Lili Zhang ◽  
Jeffrey A. Whitsett ◽  
Edward E. Morrisey

GATA6 is a member of the GATA family of zinc-finger transcriptional regulators and is the only known GATA factor expressed in the distal epithelium of the lung during development. To define the role that GATA6 plays during lung epithelial cell development, we expressed a GATA6-Engrailed dominant-negative fusion protein in the distal lung epithelium of transgenic mice. Transgenic embryos lacked detectable alveolar epithelial type 1 cells in the distal airway epithelium. These embryos also exhibited increased Foxp2 gene expression, suggesting a disruption in late alveolar epithelial differentiation. Alveolar epithelial type 2 cells, which are progenitors of alveolar epithelial type 1 cells, were correctly specified as shown by normal thyroid transcription factor 1 and surfactant protein A gene expression. However, attenuated endogenous surfactant protein C expression indicated that alveolar epithelial type 2 cell differentiation was perturbed in transgenic embryos. The number of proximal airway tubules is also reduced in these embryos, suggesting a role for GATA6 in regulating distal-proximal airway development. Finally, a functional role for GATA factor function in alveolar epithelial type 1 cell gene regulation is supported by the ability of GATA6 to trans-activate the mouse aquaporin-5 promoter. Together, these data implicate GATA6 as an important regulator of distal epithelial cell differentiation and proximal airway development in the mouse.

2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Hiroshi Kondo ◽  
Keiko Miyoshi ◽  
Shoji Sakiyama ◽  
Akira Tangoku ◽  
Takafumi Noma

Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated anin vitrosystem to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions,surfactant protein C(SPC), an ATII marker, was upregulated in both H12 and B7.Aquaporin 5(AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited,SPCandthyroid transcription factor-1(TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF),surfactant protein BandTTF-1expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.


2021 ◽  
Author(s):  
Anthea Weng ◽  
Mariana Maciel-Herrerias ◽  
Satoshi J Watanabe ◽  
Annette S. Flozak ◽  
Lynn Welch ◽  
...  

Epithelial polyploidization post-injury is a conserved phenomenon, recently shown to improve barrier restoration during wound healing. Whether lung injury can induce alveolar epithelial polyploidy is not known. We show that bleomycin injury induces AT2 cell hypertrophy and polyploidy. AT2 polyploidization is also seen in short term ex vivo cultures, where AT2-to-AT1 trans-differentiation is associated with substantial binucleation due to failed cytokinesis. Both hypertrophic and polyploid features of AT2 cells can be attenuated by inhibiting the integrated stress response (ISR) using the small molecule ISRIB. These data suggest that AT2 polyploidization may be a feature of alveolar epithelial injury. As AT2 cells serve as facultative progenitors for the distal lung epithelium, a propensity for injury-induced binucleation has implications for AT2 self-renewal and regenerative potential upon re-injury, which may benefit from targeting the ISR.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 4503-4503
Author(s):  
B. T. Teh ◽  
X. J. Yang ◽  
M. Tan ◽  
H. L. Kim ◽  
W. Stadler ◽  
...  

4503 Background: Despite the moderate incidence of papillary renal cell carcinoma (PRCC), there is a disproportionately limited understanding of its underlying genetic programs. There is no effective therapy for metastatic PRCC, and patients are often excluded from kidney cancer trials. A morphological classification of PRCC into Type 1 and Type 2 tumors has been recently proposed, but its biological relevance remains uncertain. Methods: We studied the gene expression profiles of 34 cases of PRCC using Affymetrix HGU133 Plus 2.0 arrays (54,675 probe sets) using both unsupervised and supervised analysis. Comparative genomic microarray analysis (CGMA) was used to infer cytogenetic aberrations, and pathways were ranked with a curated database. Expression of selected genes was validated by immunohistochemistry in 34 samples, with 15 independent tumors. Results: We identified two highly distinct molecular PRCC subclasses with morphologic correlation. The first class, with excellent survival, corresponded to three histological subtypes: Type 1, low-grade Type 2 and mixed Type 1/low-grade Type 2 tumors. The second class, with poor survival, corresponded to high-grade Type 2 tumors (n = 11). Dysregulation of G1/S and G2/M checkpoint genes were found in Class 1 and Class 2 tumors respectively, alongside characteristic chromosomal aberrations. We identified a 7-transcript predictor that classified samples on cross-validation with 97% accuracy. Immunohistochemistry confirmed high expression of cytokeratin 7 in Class 1 tumors, and of topoisomerase IIα in Class 2 tumors. Conclusions: We report two molecular subclasses of PRCC, which are biologically and clinically distinct, which may be readily distinguished in a clinical setting. This may also have therapeutic implications. No significant financial relationships to disclose.


2006 ◽  
Vol 80 (7) ◽  
pp. 3650-3654 ◽  
Author(s):  
Marie-Claude Geoffroy ◽  
Gilliane Chadeuf ◽  
Anne Orr ◽  
Anna Salvetti ◽  
Roger D. Everett

ABSTRACT Expression of the herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 in transfected cells reactivates rep gene expression from integrated adeno-associated virus (AAV) type 2 genomes via a mechanism that requires both its RING finger and USP7 interaction domains. In this study, we found that the rep reactivation defect of USP7-binding-negative ICP0 mutants can be overcome by further deletion of sequences in the C-terminal domain of ICP0, indicating that binding of USP7 to ICP0 is not directly required. Unlike the case in transfected cells, only the RING finger domain of ICP0 was essential for rep gene reactivation during HSV-1 infection. However, mutants unable to bind to USP7 activate HSV-1 gene expression and reactivate rep gene expression with reduced efficiencies. These results further elucidate the role of ICP0 as a helper factor for AAV replication and illustrate that care is required when extrapolating from the properties of ICP0 in transfection assays to events occurring during HSV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document