Viability and metabolic activity of homozygous Brachyury (T) embryos

Development ◽  
1977 ◽  
Vol 40 (1) ◽  
pp. 271-276
Author(s):  
K. O. Yanagisawa ◽  
H. Fujimoto

Some features of metabolic activity of homozygous mutants for the Brachyury (T) mutation were studied. The embryos incorporated tritium-labelled thymidine up to about the ‘32–36 somite’ stage. The total amount of protein per embryo increased until the same stage. T/T cells proved viable in vitro over the in utero lethal period. Several cell lines were established from +/+ and T/T embryonic cells.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Javier Martin Broto ◽  
Katia Scotlandi ◽  
Michele Cavo ◽  
...  

BackgroundHigh-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma.MethodsThe human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed.ResultsAlong with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells.ConclusionsTaken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lena Andersch ◽  
Josefine Radke ◽  
Anika Klaus ◽  
Silke Schwiebert ◽  
Annika Winkler ◽  
...  

Abstract Background Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. Methods CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. Results All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. Conclusion Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.


2011 ◽  
Vol 317 (14) ◽  
pp. 2019-2030 ◽  
Author(s):  
Yoshitaka Yamaguchi ◽  
Atsushi Takayanagi ◽  
Jiabing Chen ◽  
Kosuke Sakai ◽  
Jun Kudoh ◽  
...  

2005 ◽  
Vol 102 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Todd M. Savarese ◽  
Taichang Jang ◽  
Hoi Pang Low ◽  
Rebecca Salmonsen ◽  
N. Scott Litofsky ◽  
...  

Object. Brain tumors, including gliomas, develop several months after rats are exposed in utero to N-ethyl-N-nitrosourea (ENU). Although pathological changes cannot be detected until these animals are several weeks old, the process that eventually leads to glioma formation must begin soon after exposure given the rapid clearance of the carcinogen and the observation that transformation of brain cells isolated soon after exposure occasionally occurs. This model can therefore potentially provide useful insights about the early events that precede overt glioma formation. The authors hypothesized that future glioma cells arise from stem/progenitor cells residing in or near the subventricular zone (SVZ) of the brain. Methods. Cells obtained from the SVZ or corpus striatum in ENU-exposed and control rats were cultured in an epidermal growth factor (EGF)-containing, chemically defined medium. Usually, rat SVZ cells cultured in this manner (neurospheres) are nestin-positive, undifferentiated, and EGF-dependent and undergo cell senescence. Consistent with these prior observations, control SVZ cells undergo senescence by the 12th to 15th doubling (20 of 20 cultures). In contrast, three of 15 cultures of cells derived from the SVZs of individual ENU-treated rats continue to proliferate for more than 60 cell passages. Each of these nestin-expressing immortalized cell lines harbored a common homozygous deletion spanning the INK4a/ARF locus and was unable to differentiate into neural lineages after exposure to specific in vitro stimuli. Nevertheless, unlike the rat C6 glioma cell line, these immortalized cell lines demonstrate EGF dependence and low clonogenicity in soft agar and did not form tumors after intracranial transplantation. Conclusions. Data in this study indicated that immortalized cells may represent glioma precursors that reside in the area of the SVZ after ENU exposure that may serve as a reservoir for further genetic and epigenetic hits that could eventually result in a full glioma phenotype.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi122
Author(s):  
Virginia Laspidea ◽  
Montse Puigdelloses ◽  
Ignacio Iñigo-Marco ◽  
Marc Garcia-Moure ◽  
Iker Ausejo ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor, being the leading cause of pediatric death caused by cancer. We previously showed that administration of the oncolytic virus Delta-24-RGD to DIPG murine models was safe and led to an increase in the median survival of these animals. However, not all the animals responded, underscoring the need to improve this therapy. In order to increase the antitumoral effect of the virus, we have engineered Delta-24-RGD with the costimulatory ligand 4-1BBL (Delta24-ACT). 4-1BB is a costimulatory receptor that promotes the survival and expansion of activated T cells, and the generation and maintenance of memory CD8+ T cells. In this project, we evaluated the oncolytic effect of Delta24-ACT and the antitumor immune response in DIPG murine models. In vitro, Delta24-ACT was able to infect and induce cell death in a dose-dependent manner in murine DIPG cell lines. In addition, Delta24-ACT was able to replicate in these tumor cells and to express viral proteins. Moreover, infected cells expressed 41BBL in their membranes. Delta24-ACT could induce immunogenic cell death due to an increased secretion of ATP and calreticulin translocation to the membrane of infected cells (in no-infected cells it located in the ER), DAMPs that can trigger the immune response activation. In vivo, Delta24-ACT demonstrated to be safe in all the tested doses and was able to induce a significant increase in the median survival of the treated animals. Moreover, long-term survivors display immunological memory. Delta24-ACT treatment led to antitumoral effect in DIPG murine cell lines in vitro. Of significance, we have demonstrated that in vivo administration of Delta24-ACT is safe and results in an enhanced antitumor effect. Future in vivo studies will explore the underlying immune mechanism of the virus.


Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 183 ◽  
Author(s):  
Ulrike Neumann ◽  
Felix Derwenskus ◽  
Verena Flaiz Flister ◽  
Ulrike Schmid-Staiger ◽  
Thomas Hirth ◽  
...  

Microalgae contain a multitude of nutrients and can be grown sustainably. Fucoxanthin, a carotenoid from Phaeodactylum tricornutum, could have beneficial health effects. Therefore, we investigated the anti-inflammatory, antioxidative and antiproliferative effects of fucoxanthin derived from this diatom in vitro. The effects of purified fucoxanthin on metabolic activity were assessed in blood mononuclear cells and different cell lines. In cell lines, caspase 3/7 activity was also analyzed. Nitrogen monoxide release and mRNA-expression of proinflammatory cytokines were measured. For antioxidant assays, cell free assays were conducted. Additionally, the antioxidant effect in neutrophils was quantified and glutathione was determined in HeLa cells. The results show that neither did fucoxanthin have anti-inflammatory properties nor did it exert cytotoxic effects on mononuclear cells. However, the metabolic activity of cell lines was decreased up to 58% and fucoxanthin increased the caspase 3/7 activity up to 4.6-fold. Additionally, dose-dependent antioxidant effects were detected, resulting in a 63% decrease in chemiluminescence in blood neutrophils and a 3.3-fold increase in the ratio of reduced to oxidized glutathione. Our studies show that fucoxanthin possesses antiproliferative and antioxidant activities in vitro. Hence, this carotenoid or the whole microalgae P. tricornutum could be considered as a food or nutraceutical in human nutrition, showcasing beneficial health effects.


2001 ◽  
Vol 8 (6) ◽  
pp. 1131-1135 ◽  
Author(s):  
Simona Neri ◽  
Erminia Mariani ◽  
Alessandra Meneghetti ◽  
Luca Cattini ◽  
Andrea Facchini

ABSTRACT Cytotoxicity assays provide an in vitro evaluation of the lytic activity of NK and T cells against tumors or transformed cells. However, none of these methods allow the recovery of cells or supernatants after the assay. We standardized a microcytotoxicity test using calcein-acetoxymethyl (calcein-AM) dye that requires very small quantities of cells while maintaining the same sensitivity as the traditional 51Cr assay. The assay is applicable to resting as well as activated human effector cells and uses different targets such as human cell lines that are adherent or growing in suspension and resistant or sensitive. The most important feature of the method is the possibility of recovering cells and supernatants for additional analyses such as phenotyping and evaluation of soluble factors.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12 ◽  
Author(s):  
Nikhil Hebbar ◽  
Rebecca Epperly ◽  
Abishek Vaidya ◽  
Sujuan Huang ◽  
Cheng Cheng ◽  
...  

Finding the ideal immunotherapy target for AML has proven challenging and is limited by overlapping expression of antigens on hematopoietic progenitor cells (HPCs) and AML blasts. Intracellular Glucose-regulated-protein 78 (GRP78) is a key UPR regulator, which normally resides in the endoplasmic reticulum (ER). GRP78 is overexpressed and translocated to the cell surface in a broad range of solid tumors and hematological malignancies in response to elevated ER stress, making it an attractive target for immune-based therapies with T cells expressing chimeric antigen receptors (CARs). The goal of this project was to determine the expression of GRP78 on pediatric AML samples, generate GRP78-CAR T cells, and evaluate their effector function against AML blasts in vitro and in vivo. To demonstrate overexpression of GRP78 in AML, we performed gene expression analysis by RNAseq on a cohort of cord blood CD34+ cell samples (N=5) and 74 primary AML samples. Primary AML samples included RUNX1-RUNX1T1 (N=7), CBFB-MYH11(N=17), KMT2A rearrangement (N=28) and NUP98 (N=22). Analysis showed increased GRP78 expression in AML samples, especially in KMT2A- and NUP98-rearranged AML. To demonstrate surface expression of GRP78, we performed flow cytometry of AML (Kg1a, MOLLM13, THP-1, MV4-11) cell lines as well as 11 primary AML samples and 5 PDX samples; non transduced (NT) T cells served as control. All AML samples, including cell lines, primary AML blasts, and PDX samples, showed increased expression of GRP78 on their cell surface in comparison to NT T cells We then designed a retroviral vector encoding a GRP78-CAR using a GRP78-specific peptide as an antigen recognition domain, and generated GRP78-CAR T cells by retroviral transduction of primary human T cells. Median transduction efficiency was 82% (± 5-8%, N=6), and immunophenotypic analysis showed a predominance of naïve and terminal effector memory subsets on day 7 after transduction (N=5). To determine the antigen specificity of GRP78-CAR T cells, we performed coculture assays in vitro with cell surface GRP78+ (AML cell lines: MOLM13, MV-4-11, and THP-1 and 3 AML PDX samples) or cell surface GRP78- (NT T cells) targets. T cells expressing CARs specific for HER2-, CD19-, or a non-functional GRP78 (DGRP78)-CAR served as negative controls. GRP78-CAR T cells secreted significant amounts of IFNg and IL-2 only in the presence of GRP78+ target cells (N=3, p<0.005); while control CAR T cells did not. GRP78-CAR T cells only killed GRP78+ target cells in standard cytotoxicity assays confirming specificity. To test the effects of GRP78-CAR T cells on normal bone marrow derived HPCs, we performed standard colony forming unit (CFU) assays post exposure to GRP78-CAR or NT T cells (effector to target (E:T) ratio 1:1 and 5:1) and determined the number of BFU-E, CFU-E, CFU-GM, and CFU-GEMM. No significant differences between GRP78-CAR and NT T cells were observed except for CFU-Es at an E:T ratio of 5:1 that was not confirmed for BFU-Es. Finally, we evaluated the antitumor activity of GRP78-CAR T cells in an in vivo xenograft AML model (MOLM13). Tumor growth was monitored by serial bioluminescence imaging. A single intravenous dose of GRP78-CAR T cells induced tumor regression, which resulted in a significant (p<0.001) survival advantage in comparison to mice that had received control CAR T cells. In conclusion, GRP78 is expressed on the cell surface of AML. GRP78-CAR T cells have potent anti-AML activity in vitro and in vivo and do not target normal HPCs. Thus, our cell therapy approach warrants further active exploration and has the potential to improve outcomes for patients with AML. Disclosures Hebbar: St. Jude: Patents & Royalties. Epperly:St. Jude: Patents & Royalties. Vaidya:St. Jude: Patents & Royalties. Gottschalk:TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy; Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2857-2857
Author(s):  
Laura Newell ◽  
Joseph Tuscano ◽  
Robert o'Donnell ◽  
Yunpeng Ma

Abstract Abstract 2857 Background: Non-Hodgkin's lymphoma (NHL) affects over 400,000 people in the United States and its incidence increases with age. Treatment options include cytotoxic chemotherapy, which is often poorly tolerated by elderly patients, and monoclonal antibody (mAb) therapy. Nearly 70% of NHL patients eventually die of the disease. Development of effective alternate treatments with favorable toxicity profiles is necessary. Fermented wheat germ extract (FWGE) has shown anticancer potential in laboratory animals as well as in some small clinical studies; it is produced under GMP conditions in Europe and sold as Avemar™. The mechanism of action of FWGE is unclear, but is thought to involve metabolic pathways involved in tumor cell death. We examined the effects of FWGE on NHL and found significant lymphomacidal activity using in vitro and in vivo assays. We then further purified and characterized the active components of FWGE in order to develop a more potent form and to understand the mechanism of action, physiologic, and immunologic properties. Methods: FWGE was produced by fermenting purified wheat germ (Triticum aestivum) with Baker's yeast. The FWGE was further purified by removing insoluble material, precipitating proteins, freeze drying, fractionating with Sepharose and Sephadex columns, and then dialyzing to remove small molecules. The resultant fermented wheat germ proteins (FWGP) were assessed for in vitro cytotoxicity and pro-apoptotic activity using a panel of NHL cell lines. In vivo lymphomacidal activity was assessed in nude mice bearing Raji lymphoma xenografts. Mice were treated with increasing daily doses of FWGE by gastric lavage and compared to untreated controls as well as the commercially available fermented wheat germ product, Avemar. Results: In vitro killing assays with FWGE (regardless of the source) demonstrated lymphomacidal properties in three NHL cell lines (Jurkat, Raji, and Ramos). Pre-treatment of FWGE with heat or proteinase K reduced the lymphomacidal activity, suggesting that the active component was a protein. Nude mice bearing Raji lymphoma xenografts treated with FWGE confirmed the lymphomacidal properties of FGWE; there was no detectable toxicity as assessed by observation, mouse weight, or blood counts. The purified low molecular weight proteins (FWGP) also demonstrated lymphomacidal properties by cytotoxicity assays and murine NHL models, but at 1/1000th of the original dose. When FWGP was combined with rituximab, there was enhanced in vitro lymphomacidal activity, with over a 4000-fold reduction in the IC50. FWGP-induced NHL cell death was mediated by caspase-3-dependent apoptosis. FWGP augmented the host immune effector mechanisms, including ADCC and CDC, along with potent activation of NK-T cells (CD3/69/16), CD4+ T-cells and monocytes. Conclusions: FWGE can be easily produced and has cytotoxic effects in in vitro assays and in vivo. The purified FWGP are quantifiable, and are 10–1000 times more potent than FWGE. The mechanism of FWGP activity is based on direct pro-apoptotic effects as well as augmentation of host immune mediators. FWGP has activity against various subtypes of NHL. Studies are ongoing to further characterize the immune effects and anti-cancer properties of FWGP, as is planning for a human clinical trial +/− rituximab in patients with NHL. Disclosure: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document