Herpes simplex virus type 2 UL14 gene product has heat shock protein(HSP)-like functions

2002 ◽  
Vol 115 (12) ◽  
pp. 2517-2527
Author(s):  
Yohei Yamauchi ◽  
Kaoru Wada ◽  
Fumi Goshima ◽  
Tohru Daikoku ◽  
Kenzo Ohtsuka ◽  
...  

The HSV-2 UL14 gene encodes a 32 kDa protein that is a minor component of the viral tegument. The protein relocates other viral proteins such as VP26 and UL33 protein into the nuclei of transiently coexpressing cells(Yamauchi et al., 2001). We found that the protein shared some characteristics of heat shock proteins(HSPs) or molecular chaperones, such as nuclear translocation upon heat shock,ATP deprivation and osmotic shock. Interestingly, a significant homology over a stretch of 15 amino acids was found between an N-terminal region of HSV UL14 protein and the substrate-binding domain of Hsp70 family proteins. Two arginine residues in this region were important for nuclear translocation of VP26. In addition, overexpression of UL14 protein increased the activity of coexpressed firefly luciferase, which suggested that the protein functioned in the folding of newly synthesized luciferase. We thus conclude that UL14 protein can act as a chaperone-like protein in a singly expressed state.

Author(s):  
Luxi Chen ◽  
Rocío Gómez ◽  
Linda C. Weiss

Dormancy is a lifecycle delay that allows organisms to escape suboptimal environmental conditions. As a genetically programmed type of dormancy, diapause is usually accompanied by metabolic depression and enhanced tolerance toward adverse environmental factors. However, the drivers and regulators that steer an organism’s development into a state of suspended animation to survive environmental stress have not been fully uncovered. Heat shock proteins 70 (HSP70s), which are often produced in response to various types of stress, have been suggested to play a role in diapause. Considering the diversity of the Hsp70 family, different family members may have different functions during diapause. In the present study, we demonstrate the expression of two hsp70 genes (A and B together with protein localization of B) throughout continuous and diapause interrupted development of Daphnia magna. Before and after diapause, the expression of Dmhsp70-A is low. Only shortly before diapause and during diapause, Dmhsp70-A is significantly upregulated and may therefore be involved in diapause preparation and maintenance. In contrast, Dmhsp70-B is expressed only in developing embryos but not in diapausing embryos. During continuous development, the protein of this Hsp70 family member is localized in the cytosol. When we expose both embryo types to heat stress, expression of both hsp70 genes increases only in developing embryos, and the protein of family member B is translocated to the nucleus. In this stress formation, this protein provides effective protection of nucleoplasmic DNA. As we also see this localization in diapausing embryos, it seems that Daphnia embryo types share a common subcellular strategy when facing dormancy or heat shock, i.e., they protect their DNA by HSP70B nuclear translocation. Our study underlines the distinctive roles that different Hsp70 family members play throughout continuous and diapause interrupted development.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Elias Blasius ◽  
Elke Gülden ◽  
Hubert Kolb ◽  
Christiane Habich ◽  
Volker Burkart

Background. Heat shock proteins (Hsp) act as intracellular chaperones and in addition are used as adjuvant in vaccines of peptides complexed with recombinant Hsp. By interacting with autologous peptides, Hsp may promote the induction of autoimmune reactivity. Objective. Here, we analysed whether the effect of Hsp on macrophages is modulated by insulin peptides known to interact with Hsp. Results. Combinations of the 70 kDa Hsp DnaK with peptide B11-23 from the core region of the proinsulin B-chain induced the release of the inflammatory mediators interleukin-6, tumor necrosis factor α, and interleukin-1β from cells of human and murine macrophage lines. In parallel, there was high-affinity binding of B11-23 to DnaK. DnaK mixed with peptides from other regions of the insulin molecule did not stimulate cytokine secretion. DnaK alone induced little cytokine production, and peptides alone induced none. Conclusion. The macrophage-stimulating potential of Hsp70 family proteins when combined with the proinsulin B-chain peptide B11-23 may contribute to the immunodominance of this peptide in the development of beta cell-directed autoimmunity in type 1 diabetes.


2020 ◽  
Vol 21 (2) ◽  
pp. 616
Author(s):  
Magdalena Gorska-Ponikowska ◽  
Alicja Kuban-Jankowska ◽  
Antonella Marino Gammazza ◽  
Agnieszka Daca ◽  
Justyna M. Wierzbicka ◽  
...  

2-Methoxyestradiol is one of the natural 17β-estradiol derivatives and a potential novel anticancer agent currently being under evaluation in advanced phases of clinical trials. However, the mechanism of anticancer action of 2-methoxyestradiol has not been yet fully established. In our previous studies we have demonstrated that 2-methoxyestradiol selectively induces the expression and nuclear translocation of neuronal nitric oxide synthase in osteosarcoma 143B cells. Heat shock proteins (Hsps) are factors involved in the regulation of expression and activity of nitric oxide synthases. Herein, we chose osteosarcoma cell lines differed in metastatic potential, metastatic 143B and highly metastatic MG63.2 cells, in order to further investigate the anticancer mechanism of 2-methoxyestradiol. The current study aimed to determine the role of major heat shock proteins, Hsp90 and Hsp70 in 2-methoxyestradiol-induced osteosarcoma cell death. We focused on the implication of Hsp90 and Hsp70 in control under expression of neuronal nitric oxide synthase, localization of the enzyme, and further generation of nitro-oxidative stress. To give the insight into the role of Hsp90 in regulation of anticancer efficacy of 2-methoxyestradiol, we used geldanamycin as a potent Hsp90 inhibitor. Herein, we evidenced that inhibition of Hsp90 controls the protein expression of 2-methoxyestradiol-induced neuronal nitric oxide synthase and inhibits enzyme nuclear translocation. We propose that decreased level of neuronal nitric oxide synthase protein after a combined treatment with 2-methoxyestradiol and geldanamycin is directly associated with the accompanying upregulation of Hsp70 and downregulation of Hsp90. This interaction resulted in abrogation of anticancer efficacy of 2-methoxyestradiol by geldanamycin.


Science ◽  
1992 ◽  
Vol 258 (5081) ◽  
pp. 484-486 ◽  
Author(s):  
S. Nadler ◽  
M. Tepper ◽  
B Schacter ◽  
C. Mazzucco

2008 ◽  
Vol 82 (13) ◽  
pp. 6324-6336 ◽  
Author(s):  
Christine M. Livingston ◽  
Neal A. DeLuca ◽  
Dianna E. Wilkinson ◽  
Sandra K. Weller

ABSTRACT Herpes simplex virus type 1 (HSV-1) DNA replication occurs in replication compartments that form in the nucleus by an ordered process involving a series of protein scaffold intermediates. Following entry of viral genomes into the nucleus, nucleoprotein complexes containing ICP4 can be detected at a position adjacent to nuclear domain 10 (ND10)-like bodies. ND10s are then disrupted by the viral E3 ubiquitin ligase ICP0. We have previously reported that after the dissociation of ND10-like bodies, ICP8 could be observed in a diffuse staining pattern; however, using more sensitive staining methods, we now report that in addition to diffuse staining, ICP8 can be detected in tiny foci adjacent to ICP4 foci. ICP8 microfoci contain UL9 and components of the helicase-primase complex. HSV infection also results in the reorganization of the heat shock cognate protein 70 (Hsc70) and the 20S proteasome into virus-induced chaperone-enriched (VICE) domains. In this report we show that VICE domains are distinct but adjacent to the ICP4 nucleoprotein complexes and the ICP8 microfoci. In cells infected with an ICP4 mutant virus encoding a mutant protein that cannot oligomerize on DNA, ICP8 microfoci are not detected; however, VICE domains could still be formed. These results suggest that oligomerization of ICP4 on viral DNA may be essential for the formation of ICP8 microfoci but not for the reorganization of host cell chaperones into VICE domains.


2021 ◽  
Vol 22 (17) ◽  
pp. 9366
Author(s):  
Anna Lubkowska ◽  
Waldemar Pluta ◽  
Aleksandra Strońska ◽  
Alicja Lalko

Heat shock proteins (HSPs) are a large group of chaperones found in most eukaryotes and bacteria. They are responsible for the correct protein folding, protection of the cell against stressors, presenting immune and inflammatory cytokines; furthermore, they are important factors in regulating cell differentiation, survival and death. Although the biological function of HSPs is to maintain cell homeostasis, some of them can be used by viruses both to fold their proteins and increase the chances of survival in unfavorable host conditions. Folding viral proteins as well as replicating many different viruses are carried out by, among others, proteins from the HSP70 and HSP90 families. In some cases, the HSP70 family proteins directly interact with viral polymerase to enhance viral replication or they can facilitate the formation of a viral replication complex and/or maintain the stability of complex proteins. It is known that HSP90 is important for the expression of viral genes at both the transcriptional and the translational levels. Both of these HSPs can form a complex with HSP90 and, consequently, facilitate the entry of the virus into the cell. Current studies have shown the biological significance of HSPs in the course of infection SARS-CoV-2. A comprehensive understanding of chaperone use during viral infection will provide new insight into viral replication mechanisms and therapeutic potential. The aim of this study is to describe the molecular basis of HSP70 and HSP90 participation in some viral infections and the potential use of these proteins in antiviral therapy.


2021 ◽  
Author(s):  
Haneul Yoo ◽  
Jared A.M. Bard ◽  
Evgeny Pilipenko ◽  
D. Allan Drummond

Heat shock triggers formation of intracellular protein aggregates and induction of a molecular disaggregation system. Although this system (Hsp100/Hsp70/Hsp40 in most cellular life) can disperse aggregates of model misfolded proteins, its activity on these model substrates is puzzlingly weak, and its endogenous heat-induced substrates have largely eluded biochemical study. Recent work has revealed that several cases of apparent heat-induced aggregation instead reflect evolved, adaptive biomolecular condensation. In budding yeast Saccharomyces cerevisiae, the resulting condensates depend on molecular chaperones for timely dispersal in vivo, hinting that condensates may be major endogenous substrates of the disaggregation system. Here, we show that the yeast disaggregation system disperses heat-induced biomolecular condensates of poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used model substrate, firefly luciferase. Pab1 condensate dispersal also differs from aggregate dispersal in its molecular requirements, showing no dependence on small heat-shock proteins and a strict requirement for type II Hsp40. Unlike luciferase, Pab1 is not fully threaded (and thus not fully unfolded) by the disaggregase Hsp104 during dispersal, which we show can contribute to the extreme differences in dispersal efficiency. The Hsp70-related disaggregase Hsp110 shows some Pab1 dispersal activity, a potentially important link to animal systems, which lack cytosolic Hsp104. Finally, we show that the long-observed dependence of the disaggregation system on excess Hsp70 stems from the precise mechanism of the disaggregation system, which depends on the presence of multiple, closely spaced Hsp70s for Hsp104 recruitment and activation. Our results establish heat-induced biomolecular condensates of Pab1 as a direct endogenous substrate of the disaggregation machinery which differs markedly from previously studied foreign substrates, opening a crucial new window into the native mechanistic behavior and biological roles of this ancient system.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 693 ◽  
Author(s):  
Feng Qin ◽  
Liang Lin ◽  
Yanxia Jia ◽  
Weiqi Li ◽  
Buzhu Yu

At the cellular level, the remodelling of membrane lipids and production of heat shock proteins are the two main strategies whereby plants survive heat stress. Although many studies related to glycerolipids and HSPs under heat stress have been reported separately, detailed alterations of glycerolipids and the role of HSPs in the alterations of glycerolipids still need to be revealed. In this study, we profiled the glycerolipids of wild-type Arabidopsis and its HSP101-deficient mutant hot-1 under two types of heat stress. Our results demonstrated that the alterations of glycerolipids were very similar in wild-type Arabidopsis and hot-1 during heat stress. Although heat acclimation led to a slight decrease of glycerolipids, the decrease of glycerolipids in plants without heat acclimation is more severe under heat shock. The contents of 36:x monogalactosyl diacylglycerol (MGDG) were slightly increased, whereas that of 34:6 MGDG and 34:4 phosphatidylglycerol (PG) were severely decreased during moderate heat stress. Our findings suggested that heat acclimation could reduce the degradation of glycerolipids under heat shock. Synthesis of glycerolipids through the prokaryotic pathway was severely suppressed, whereas that through the eukaryotic pathway was slightly enhanced during moderate heat stress. In addition, HSP101 has a minor effect on the alterations of glycerolipids under heat stress.


1978 ◽  
Vol 78 (3) ◽  
pp. 653-662 ◽  
Author(s):  
W W Schlaepfer ◽  
L A Freeman

Intact neurofilaments were isolated in parallel from rat peripheral nerve and spinal cord by osmotic shock into hypotonic media containing divalent cation chelators. Isolated neurofilaments were washed and separated by multiple centrifugations in 0.1 M NaCl. Abundant intact neurofilaments were identified in the washed pellets by negative staining techniques. Their origin from neurofilaments was confirmed by immune electron microscopy. Washed neurofilaments were extracted from lipid and membranous components with 8 M urea. Analyses of neurofilament isolates on sodium dodecyl sulfate gels showed that proteins of 200,000, 150,000, and 69,000 mol wt were the major components of intact neurofilaments derived from rat peripheral and central nervous systems. These same proteins were identified in whole tissue homogenates of both sources and became enriched during the isolation of intact neurofilaments. A minor component of 64,000 mol wt arose during isolation. Other proteins were identified as contaminants. Small amounts of proteins with electrophoretic migration of tubulin and actin remain in neurofilament isolates.


Sign in / Sign up

Export Citation Format

Share Document