scholarly journals Whitening Effect of Adipose-Derived Stem Cells: A Critical Role of TGF-β1

2008 ◽  
Vol 31 (4) ◽  
pp. 606-610 ◽  
Author(s):  
Won-Serk Kim ◽  
So-Hyun Park ◽  
Se-Jin Ahn ◽  
Hyung-Ki Kim ◽  
Jeong-Soo Park ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2326 ◽  
Author(s):  
Hisham F. Bahmad ◽  
Reem Daouk ◽  
Joseph Azar ◽  
Jiranuwat Sapudom ◽  
Jeremy C. M. Teo ◽  
...  

Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This review focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Yongli Ji ◽  
Yunrui Lu ◽  
Jian Shen ◽  
Meixiang Xiang ◽  
Yao Xie

Introduction: Recent researches identified the existence of perivascular adipose-derived stem cells (ADSCs) which could differentiate into vascular lineages and participate in vascular remodeling. Single-cell mRNA analysis revealed cellular heterogeneity of subcutaneous ADSCs in respect to cell clustering and cell differentiation. However, such analysis of perivascular ADSCs has not been investigated at a single-cell level. Hypothesis: There is a significant difference among perivascular ADSCs subpopulations in respect to vascular-lineage differentiation. Methods: We performed droplet-based single-cell profiling of subcutaneous and perivascular adipose stromal cells and compared ADSCs regarding their heterogeneity, gene ontology, and cell fate trajectory by applying single-cell analysis as well as in vitro and in vivo assays. Results: Single-cell analysis uncovered 4 perivascular ADSCs subpopulations including Dpp4+ , Col4a2+ / Icam1+ , Clec11a+ / Cpe+ and Sult1e1+ cells. Notably, the Clec11a + subpopulation comprised the bulk of perivascular ADSCs, while was hardly presented in subcutaneous ADSCs. Further gene-set enrichment analysis suggested Clec11a + ADSCs were potentially involved with TGF-β signaling pathways and pseudotemporal analysis predicted that Clec11a + subpopulation lay at the end of the differential trajectory towards smooth muscle cells (SMCs). In vitro assays displayed that perivascular ADSCs could differentiate into SMCs via CLEC11A regulation when treated by TGF-β1. To further elucidate the role of the Clec11a + subpopulation in SMCs differentiation, we labeled CLEC11A+ and CLEC11A- perivascular ADSCs by lentivirus transfection and isolated them by FACS assay. CLEC11A+ cells showed the greater capability of SMCs differentiation in response to TGF-β1 in vitro and enhanced neointima formation when transplanted to the adventitial side of guidewire injured arteries. Conclusions: The present study depicted the unique heterogeneity of perivascular ADSCs and the novel role of the Clec11a + subpopulation, providing a supplement for the relationship between perivascular ADSCs and vascular SMCs.


2020 ◽  
Vol 20 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lei Yang ◽  
Shuoji Zhu ◽  
Yongqing Li ◽  
Jian Zhuang ◽  
Jimei Chen ◽  
...  

Background: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. Objective: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. Methods: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p− group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes—including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin—were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. Results : After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p− group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. Conclusion: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.


2021 ◽  
Vol 22 (6) ◽  
pp. 2864
Author(s):  
Anna Pulawska-Czub ◽  
Tomasz D. Pieczonka ◽  
Paula Mazurek ◽  
Krzysztof Kobielak

Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zetao Chen ◽  
Yihong Chen ◽  
Yan Li ◽  
Weidong Lian ◽  
Kehong Zheng ◽  
...  

AbstractGlioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2016 ◽  
Vol 14 (1) ◽  
pp. 112-124 ◽  
Author(s):  
Naghmeh Naderi ◽  
Emman J Combellack ◽  
Michelle Griffin ◽  
Tina Sedaghati ◽  
Muhammad Javed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document