Liquefaction of Harbul (Silopi SE Anatolia, Turkey) Asphaltite by Flash Pyrolysis

2008 ◽  
Vol 26 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Abdurrahman Saydut ◽  
Yalcin Tonbul ◽  
Candan Hamamci

Asphaltite, being petroleum originated solid fossil fuel, can be converted into a variety of secondary products such as light hydrocarbon gases, liquid product and high quality fuel char by means of pyrolysis. Liquefaction of Harbul (Silopi, Turkey) asphaltite,-0.60+0.25 mm particle size, and using flash pyrolysis was performed in a fixed bed reactor with a heating rate 40°C min−1 at a temperature ranging from 400 to 800°C under nitrogen atmosphere. The effect of temperature on conversion and liquid yield was examined. The flash pyrolysis temperature resulted in a large increase in the oil yield, tar, gases, large increase in the yield of hydrocarbon gases occurred as a result of temperature at 550°C which was attributed to an increase thermal cracking of pyrolysis vapours. The yield of asphaltite liquid at the condition of 550°C reached a maximum 19.66 wt %. The asphaltenes of the pyrolytic oils were precipitated by addition of n-pentane. Pentane solubles were fractioned by column chromatography into aliphatic, aromatic and polar fractions using n-hexane, toluene and methanol, respectively. The composition of these fractions from silica gel column chromatography of oil obtained by nitrogen pyrolysis was characterized by FTIR.

2020 ◽  
Vol 9 (1) ◽  
pp. 107-112 ◽  
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro ◽  
Roni Ade Saputra ◽  
...  

Plasma-assisted catalytic cracking is an attractive method for producing biofuels from vegetable oil. This paper studied the effect of reactor temperature on the performance of plasma-assisted catalytic cracking of palm oil into biofuels. The cracking process was conducted in a Dielectric Barrier Discharge (DBD)-type plasma reactor with the presence of spent RFCC catalyst. The reactor temperature was varied at 400, 450, and 500 ºC. The liquid fuel product was analyzed using a gas chromatography-mass spectrometry (GC-MS) to determine the compositions. Result showed that the presenceof plasma and catalytic role can enhance the reactor performance so that the selectivity of the short-chain hydrocarbon produced increases. The selectivity of gasoline, kerosene, and diesel range fuels over the plasma-catalytic reactor were 16.43%, 52.74% and 21.25%, respectively, while the selectivity of gasoline, kerosene and diesel range fuels over a conventional fixed bed reactor was 12.07%, 39.07%, and 45.11%, respectively. The increasing reactor temperature led to enhanced catalytic role of cracking reaction,particularly directing the reaction to the shorter hydrocarbon range. The reactor temperature dependence on the liquid product components distribution over the plasma-catalytic reactor was also studied. The aromatic and oxygenated compounds increased with the reactor temperature.©2020. CBIORE-IJRED. All rights reserved


2012 ◽  
Vol 512-515 ◽  
pp. 1784-1789 ◽  
Author(s):  
De Min He ◽  
Lin Zhang ◽  
Jun Guan ◽  
Qiu Min Zhang

The pyrolysis of Honghe lignite was investigated on low heating rate (about 20°C/min) conditions in a fixed bed reactor with 10g fed in. Nitrogen was used as carrier gas operating at the range from 50 to 200ml/min. And, the temperature was tested from 440 to 560°C, the pressure ranges from 0.1MPa to 1.2MPa. The yields of coal tar, char, water and gas were obtained in experiments. The maximum coal tar yield of 9.77% (dry coal) was achieved at 520°C, 50ml/min nitrogen flow rate, pressure 0.4MPa and 20 minutes holding time. Then methanol was injected in the system at the preheat temperature 240°C(a little higher than its critical temperature). The methanol flow rate, pressure and holding time were also taken into consideration. And the results were compared with those obtained in pyrolysis under nitrogen atmosphere. It showed that higher liquid yield with lower yields of char, gas and loss were obtained with the presence of methanol, but the differences of char yields were slight. The total sulfur removal for methanol presence is considerably higher than the absence of methanol in pyrolysis. Considering the mild conditions of the pyrolysis with presence of methanol, this method may be an appropriate way to make use of the lignite efficiently and environmentally.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


2019 ◽  
Vol 19 (3) ◽  
pp. 703 ◽  
Author(s):  
Siti Jamilatun ◽  
Budhijanto Budhijanto ◽  
Rochmadi Rochmadi ◽  
Avido Yuliestyan ◽  
Arief Budiman

With a motto of preserving nature, the use of renewable resources for the fulfillment of human needs has been seen echoing these days. In response, microalgae, a water-living microorganism, is perceived as an interesting alternative due to its easy-to-cultivate nature. One of the microalgae, which possess the potential for being the future source of energy, food, and health, is Spirulina plantesis. Aiming to identify valuable chemicals possibly derived from it, catalytic and non-catalytic pyrolysis process of the residue of S. plantesis microalgae has been firstly carried out in a fixed-bed reactor over the various temperature of 300, 400, 500, 550 and 600 °C. The resulting vapor was condensed so that the liquid product consisting of the top product (oil phase) and the bottom product (water phase) can be separated. The composition of each product was then analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). In the oil phase yield, the increase of aliphatic and polyaromatic hydrocarbons (PAHs) and the decrease of the oxygenated have been observed along with the increase of pyrolysis temperature, which might be useful for fuel application. Interestingly, their water phase composition also presents some potential chemicals, able to be used as antioxidants, vitamins and food additives.


Author(s):  
Luis E Arteaga ◽  
Luis M Peralta ◽  
Yannay Casas ◽  
Daikenel Castro

The optimum design, modeling and simulation of a fixed bed multi-tube reformer for the renewable hydrogen production are carried out in the present paper. The analogies between plug flow model and a fixed bed reactor are used as design patterns. The steam reformer is designed to produce enough hydrogen to feed a 200kW fuel cell system (>2.19molH/s) and considering 85% of fuel utilization in the cell electrodes. The reactor prototype is optimized and then analyzed using a multiphysics and axisymmetric model, implemented on FEMLABM(R) where the differential mass balance by convection-diffusion and the energy balance for convection-conduction are solved. The temperature profile is controlled to maximize hydrogen production. The catalyst bed internal profiles and the effect of temperature on ethanol conversion and carbon monoxide production are discussed as well.


2013 ◽  
Vol 779-780 ◽  
pp. 1394-1397
Author(s):  
Jin Wei Jia ◽  
Xin Qian Shu ◽  
He Long Hui ◽  
Xing Min Fu ◽  
Shu Cheng Liu ◽  
...  

To investigate the effects of gangue on pyrolysis of municipal solid waste (MSW), pyrolysis of MSW with gangue has been conducted by TG and fixed-bed reactor, respectively. The effect of gangue on pyrolysis product yields and compositions of gaseous products was investigated and the obtained results were compared with similar experiments without gangue. It was shown that gangue can improve the pyrolytic reaction of MSW, reduce the char yield, increase the liquid yield. And influences of gangue on yields of H2, CO, CH4 and CO2 were more apparent, the yields of H2, CO and CO2 with gangue were improved 12.5%, 11.8% and 175%, respectively, conversely, the yield of CH4 was reduced 15.4% compared with no gangue.


2012 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Isaac Femi Titiladunayo ◽  
Olorunnisola Peter Fapetu ◽  
James Sunday Fabiyi

1992 ◽  
Vol 62 (10) ◽  
pp. 603-607
Author(s):  
Vandana Kala ◽  
R. Prasad ◽  
A. L. Sharma ◽  
J. Mathew

We have examined catalytic transformation of p-xylene into terephthalonitrile with nitric oxide (NO) over an aluminium oxide-supported ferric oxide catalyst using a fixed bed reactor in a temperature range of 320-460°c under atmospheric pressure. We achieved a maximum conversion of 80% with an Al2O3:Fe2O3 catalyst having an Al:Fe atomic ratio of nearly 1:1 at a temperature of 360°c with a NO: p-xylene mole ratio of 54.60. We studied the effect of temperature and NO: p-xylene mole ratio on the conversion to terephthalonitrile. Using Mössbauer and IR spectra of the catalysts, we concluded that Al2O3 not only provides a larger surface for the iron oxide catalyst, but also increases its activity by interacting with Fe2O3 and upholds the theory of metal support interaction.


2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Jingliang Wang ◽  
Shanshan Wang ◽  
Jianwen Lu ◽  
Mingde Yang ◽  
Yulong Wu

The pyrolysis of pine sawdust was carried out in a fixed bed reactor heated from 30 °C to a maximum of 700 °C in atmospheric nitrogen and pressurized hydrogen (5 MPa). The yield, elemental composition, thermal stability, and composition of the two pyrolysis bio-oils were analyzed and compared. The result shows that the oxygen content of the bio-oil (17.16%) obtained under the hydrogen atmosphere was lower while the heating value (31.40 MJ/kg) was higher than those of bio-oil produced under nitrogen atmosphere. Compounds with a boiling point of less than 200 °C account for 63.21% in the bio-oil at pressurized hydrogen atmosphere, with a proportion 14.69% higher than that of bio-oil at nitrogen atmosphere. Furthermore, the hydrogenation promoted the formation of ethyl hexadecanoate (peak area percentage 19.1%) and ethyl octadecanoate (peak area percentage 15.42%) in the bio-oil. Overall, high pressure of hydrogen improved the bio-oil quality derived from the pyrolysis of pine biomass.


Author(s):  
O¨zlem Onay ◽  
O¨. Mete Koc¸kar

In this study, the safflower seed (Carthamus tinctorius L.) was used as biomass sample for catalytic pyrolysis using commercial catalyst (Criterion-454) in the nitrogen atmosphere. Experimental studies were conducted in a well-swept resistively heated fixed bed reactor with a heating rate of 300°Cmin−1, a final pyrolysis temperature of 550°C and particle size of 0.6–0.85 mm. In order to establish the effect of catalyst ratio on the pyrolysis yields, experiments were conducted at a range of catalyst ratios between 1, 3, 5, 7, 10, 20% (w/w). The bio-oils were characterized by elemental analysis and some spectroscopic and chromatographic techniques.


Sign in / Sign up

Export Citation Format

Share Document