Effects of drying conditions on density and mechanical properties of cellulose nanofiber shieets

2020 ◽  
Vol 2020.28 (0) ◽  
pp. 155
Author(s):  
Hiroki TAKAHASHI ◽  
Morimasa NAKAMURA ◽  
Takashi MATSUOKA ◽  
Shinichiro IWAMOTO ◽  
Takashi ENDO
Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 404
Author(s):  
Nur Sharmila Sharip ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Yoshito Andou ◽  
Yuki Shirosaki ◽  
...  

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1064
Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Mohd Ali Hassan ◽  
Nor Azowa Ibrahim ◽  
...  

Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55–56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced.


2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540025 ◽  
Author(s):  
Hitoshi Takagi ◽  
Antonio N. Nakagaito ◽  
Kazuya Kusaka ◽  
Yuya Muneta

Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.


2014 ◽  
Vol 1621 ◽  
pp. 149-154
Author(s):  
Yukako Oishi ◽  
Atsushi Hotta

ABSTRACTCellulose nanofibers (Cel-F) were extracted by a simple and harmless Star Burst (SB) method, which produced aqueous cellulose-nanofiber solution just by running original cellulose beads under a high pressure of water in the synthetic SB chamber. By optimizing the SB process conditions, the cellulose nanofibers with high aspect ratios and the small diameter of ∼23 nm were obtained, which was confirmed by transmission electron microscopy (TEM). From the structural analysis of the Cel-F/PVA composite by the scanning electron microscopy (SEM), it was found that the Cel-F were homogeneously dispersed in the PVA matrix. Considering the high molecular compatibility of the cellulose and PVA due to the hydrogen bonding, a good adhesive interface could be expected for the Cel-F and the PVA matrix. The influences of the morphological change in Cel-F on the mechanical properties of the composites were analysed. The Young’s modulus rapidly increased from 2.2 GPa to 2.9 GPa up to 40 SB treatments (represented by the unit Pass), whereas the Young’s modulus remained virtually constant above 40 Pass. Due to the uniform dispersibility of the Cel-F, the Young’s modulus of the 100 Pass composite at the concentration of 5 wt% increased up to 3.2 GPa. The experimental results corresponded well with the general theory of the composites with dispersed short-fiber fillers, which clearly indicated that the potential of the cellulose nanofibers as reinforcement materials for hydrophilic polymers was sufficiently confirmed.


1992 ◽  
Vol 267 ◽  
Author(s):  
Timothy Vitale

ABSTRACTThe effects of drying on paper after water immersion are explored by evaluating mechanical properties. When paper is wet, structural interfiber hydrogen bonds are disrupted; drying reverses this process. However, some “as manufactured” mechanical properties are lost after wetting and drying. The method of drying was found to be critical for regaining the mechanical properties of a dried sheet.The effects of (1) wet-pressing (weight on paper during drying) and (2) wet-straining during drying are assessed. Application of incremental increases of the two variables results in changes of the mechanical properties which eventally reach and exceed the original mechanical properties which are lost during standard water immersion and drying treatments.The treatment method which most closely reproduces the “as manufactured” properties involves wet-pressing and wet-stretching. In particular, friction stretch-drying in an air-bag press can approximate original drying conditions. However, alterations of optical properties of the paper and design media due to elevated pressure prevents endorsement of the methodology.


Sign in / Sign up

Export Citation Format

Share Document