scholarly journals Effect of Ultrasonic Pretreatment on Biogas Production from Rice Straw

2019 ◽  
Vol 35 (4) ◽  
pp. 1265-1273
Author(s):  
Saran Pansripong ◽  
Weerachai Arjharn ◽  
Pansa Liplap ◽  
Thipsuphin Hinsui

The effect of ultrasonic pretreatment on biogas production from rice straw was investigated. Results showed that the application of 37 and 102 kHz resulted in a reduction of hemicellulose about 25.78% and 20.82%, respectively. An increase in the power level and exposition time decreased the hemicellulose content. The biochemical methane potential values at 37 kHz and 102 kHz of the pretreated rice straw for a period of 45 days were 250.36 and 243.79 mL CH4 g VS-1added, which were about 21.95% and 18.75% increase compared to the unpretreated one, respectively. The pretreatment with 37 kHz has provided a better methane yield compared to the one with 102 kHz. Response surface methodology indicated a positive result toward the methane yield and production rate. The utilization of ultrasonic pretreatment toward rice straw for biogas production seems to provide a solution to help solving the problems of both agricultural waste and renewable energy.

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 296 ◽  
Author(s):  
Georgia Antonopoulou ◽  
Dimitrios Vayenas ◽  
Gerasimos Lyberatos

Various pretreatment methods, such as thermal, alkaline and acid, were applied on grass lawn (GL) waste and the effect of each pretreatment method on the Biochemical Methane Potential was evaluated for two options, namely using the whole slurry resulting from pretreatment or the separate solid and liquid fractions obtained. In addition, the effect of each pretreatment on carbohydrate solubilization and lignocellulossic content fractionation (to cellulose, hemicellulose, lignin) was also evaluated. The experimental results showed that the methane yield was enhanced with alkaline pretreatment and, the higher the NaOH concentration (20 g/100 gTotal Solids (TS)), the higher was the methane yield observed (427.07 L CH4/kg Volatile Solids (VS), which was almost 25.7% higher than the BMP of the untreated GL). Comparing the BMP obtained under the two options, i.e., that of the whole pretreatment slurry with the sum of the BMPs of both fractions, it was found that direct anaerobic digestion without separation of the pretreated biomass was favored, in almost all cases. A preliminary energy balance and economic assessment indicated that the process could be sustainable, leading to a positive net heat energy only when using a more concentrated pretreated slurry (i.e., 20% organic loading), or when applying NaOH pretreatment at a lower chemical loading.


Author(s):  
Zuhaib Siddiqui ◽  
N.J. Horan ◽  
Kofi Anaman

Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.


Author(s):  
Jiraporn Kaewdiew ◽  
Rameshprabu Ramaraj ◽  
Sirichai Koonaphapdeelert ◽  
Natthawud Dussadee

In 2014-2015, there was approximately 26,823.44 x106 kg of the residue leftover from agricultural products in Northern Thailand and roughly 18,943.57x106 kg or 70.62% were left unutilized. The aim of this research was to survey and calculate the proportion of agricultural area and products as well as their corresponding waste towards potential of biogas production using biochemical methane potential (BMP) method. The results showed that rice straw was the most promising feedstock for methane production with the highest biogas yield of 363 mlN /gVSadded followed by sugarcane leaves and corn cob having 333 and 318 mlN/gVSadded, respectively. Additionally, the predicted areas for growing rice and corn decreased. Meanwhile areas for growing cassava, sugarcane and oil palm increase slightly. This study also found out that the unused agricultural waste generation was decreased due to improved waste utilization.


2018 ◽  
Vol 67 ◽  
pp. 02047 ◽  
Author(s):  
Reigina Sandriaty ◽  
Cindy Priadi ◽  
Septiana Kurnianingsih ◽  
Ayik Abdillah

The generation of fat, oil and grease (FOG) waste can be a nuisance hazard, but also a potential for resource recovery. FOG waste can be utilized as nutrient and energy source through anaerobic digestion which may increase methane yield but also increase presence of inhibitors. Using the biochemical methane potential method, this research is aimed to determine the effect of FOG waste in the co-digestion process of food waste (FW) to produce biogas. The research was conducted for 42 days at 37°C using FOG waste codigested with FW of 3 different volatile solid (VS) rasio which are 0.125, 0.3, and 0.5. The results showed that FOG waste combined with FW has a methane yield that may reach up to 485 ± 36.8 mL CH4/gr VS, the highest one produced by the 0.125 VS rasio mix. While the ratio of FOG waste with FW at 0.3 and 0.5 only produce 128 ± 195 and 4 ± 1.45 mL CH4/gr VS, respectively. The ratio of 0.125 also demonstrates the highest COD reduction of 56% compared to the other ratio which indicates the 0.125 FOG and FW ratio can be implemented to utilize FOG waste and increase methane yield during anaerobic digestion process.


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


2014 ◽  
Vol 70 (4) ◽  
pp. 599-604 ◽  
Author(s):  
Bing Wang ◽  
Ivo Achu Nges ◽  
Mihaela Nistor ◽  
Jing Liu

In this work, biochemical methane potential (BMP) tests with cellulose as a model substrate were performed with the aid of three manually operated or conventional experimental setups (based on manometer, water column and gas bag) and one automated apparatus specially designed for analysis of BMP. The methane yields were 340 ± 18, 354 ± 13, 345 ± 15 and 366 ± 5 ml CH4/g VS obtained from experimental setups with manometer, water column, gas bag, and automatic methane potential test system, which corresponded to a biodegradability of 82, 85, 83 and 88% respectively. The results demonstrated that the methane yields of cellulose obtained from conventional and automatic experimental setups were comparable; however, the methane yield obtained from the automated apparatus showed greater precision. Moreover, conventional setups for the BMP test were more time- and labour-intensive compared with the automated apparatus.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3644
Author(s):  
Sangmin Kim ◽  
Seung-Gyun Woo ◽  
Joonyeob Lee ◽  
Dae-Hee Lee ◽  
Seokhwan Hwang

Anaerobic digestion (AD) of secondary sludge is a rate-limiting step due to the bacterial cell wall. In this study, experiments were performed to characterize secondary sludges from three wastewater treatment plants (WWTPs), and to investigate the feasibility of using bacteriophage lysozymes to speed up AD by accelerating the degradation of bacterial cell walls. Protein was the main organic material (67.7% of volatile solids in the sludge). The bacteriophage T4 lysozyme (T4L) was tested for hydrolysis and biochemical methane potential. Variations in the volatile suspended solid (VSS) concentration and biogas production were monitored. The VSS reduction efficiencies by hydrolysis using T4L for 72 h increased and ranged from 17.8% to 26.4%. Biogas production using T4L treated sludges increased and biogas production was increased by as much as 82.4%. Biogas production rate also increased, and the average reaction rate coefficient of first-order kinetics was 0.56 ± 0.02/d, which was up to 47.5% higher compared to the untreated samples at the maximum. Alphaproteobacteria, Betaproteobacteria, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia were major microbial classes in all sludges. The interpretation of the microbial community structure indicated that T4L treatment is likely to increase the rate of cell wall digestion.


2013 ◽  
Vol 67 (2) ◽  
pp. 410-417 ◽  
Author(s):  
M. A. De la Rubia ◽  
V. Fernández-Cegrí ◽  
F. Raposo ◽  
R. Borja

Due to the chemical and physical structure of a lignocellulosic biomass, its anaerobic digestion (AD) is a slow and difficult process. In this paper, the results obtained from a batch biochemical methane potential (BMP) test and fed-batch mesophilic AD assays of sunflower oil cake (SuOC) are presented. Taking into account the low digestibility shown during one-stage experiments the methane yield decreased considerably after increasing the organic loading rate (OLR) from 2 to 3 g VS L−1 d−1, SuOC was subjected to a two-stage AD process (hydrolytic-acidogenic and methanogenic stages), in two separate reactors operating in series where the methanogenic stage became acidified (with >1,600 mg acetic acid L−1) at an OLR as low as 2 g VS L−1 d−1. More recently, BMP assays were carried out after mechanical, thermal, and ultrasonic pre-treatments to determine the best option on the basis of the methane yield obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Safoora Mirmohamadsadeghi ◽  
Keikhosro Karimi ◽  
Akram Zamani ◽  
Hamid Amiri ◽  
Ilona Sárvári Horváth

Organosolv pretreatment was used to improve solid-state anaerobic digestion (SSAD) for methane production from three different lignocellulosic substrates (hardwood elm, softwood pine, and agricultural waste rice straw). Pretreatments were conducted at 150 and 180°C for 30 and 60 min using 75% ethanol solution as an organic solvent with addition of sulfuric acid as a catalyst. The statistical analyses showed that pretreatment temperature was the significant factor affecting methane production. Optimum temperature was 180°C for elmwood while it was 150°C for both pinewood and rice straw. Maximum methane production was 152.7, 93.7, and 71.4 liter per kg carbohydrates (CH), which showed up to 32, 73, and 84% enhancement for rice straw, elmwood, and pinewood, respectively, compared to those from the untreated substrates. An inverse relationship between the total methane yield and the lignin content of the substrates was observed. Kinetic analysis of the methane production showed that the process followed a first-order model for all untreated and pretreated lignocelluloses.


Sign in / Sign up

Export Citation Format

Share Document