Design and Experimental Study of a Spiral Auxiliary Feeding Device for Lodged Corn on a Combine Harvester

2021 ◽  
Vol 65 (1) ◽  
pp. 31-38
Author(s):  
Qiankun Fu ◽  
Jun Fu ◽  
Zhi Chen ◽  
Rongqiang Zhao ◽  
Luquan Ren

HighlightsThis study designed an auxiliary feeding device for lodged corn on a combine harvester.The mechanical characteristics of lodged corn stalks were studied as the basis of the design.The working parameters were optimized in an orthogonal experiment.Abstract. Lodging causes kernel and ear loss in mechanical harvesting of corn and threatens grain security. To address this issue, the mechanical bending properties and lifting forces of lodged corn stalks were explored in this study. The ears of lodged corn could be lifted to the normal harvesting height by applying an upward force to the stalks. Based on this conclusion, an auxiliary feeding device for lodged corn in a combine harvester was designed. An orthogonal optimization experiment was conducted to explore the effects of working parameters on the device performance. The results demonstrated that the sequence of the factors affecting kernel loss with the auxiliary feeding device was: harvesting direction, forward speed of the harvester, and rotating speed of the spiral stalk lifter. The optimal combination of harvester forward speed and rotating speed of the spiral stalk lifter was 0.5 m s-1 and 300 rpm, and the ratio of the peripheral speed to the speed of motion was 9.42. The optimal harvesting direction was opposite to the lodging direction of the stalks. This study provides a theoretical basis and design reference for low-loss harvesting of lodged corn. Keywords: Auxiliary feeding, Combine harvester, Corn, Harvest loss, Lodging, Orthogonal experiment.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Taibai Xu ◽  
Yaoming Li

The threshing and cleaning device in the grain combine harvester is located in the same airtight space, and the air flow field in it should also be studied and tested as a whole system. In order to study the distribution of air flow field and the influence of working parameters on the air flow field in the internal space of threshing and cleaning system, the method of predicting harvest performance indexes (grain loss rate and grain impurity rate) by air flow field analysis was explored. First of all, taking the longitudinal grain combine harvester of our research group as the test object and taking the rotating speed of centrifugal fan, the angle of fan plate, the opening of chaffer, and the rotating speed of threshing cylinder as the research factors, the internal space flow channel model of threshing and cleaning system under different working conditions was established and CFD software was used to simulate and analyze the air flow field. At the same time, the hot wire anemometer is used to measure and verify the distribution of air flow field in the threshing and cleaning system under various working conditions. Then, the harvest performance index of the threshing and cleaning system under the rated feeding rate is tested under the corresponding working conditions to find the relationship between the distribution of air flow field and harvest performance, put forward the corresponding analysis and prediction methods, and establish the mathematical relationship model between the simulated air flow field and harvest performance index. The results of simulation and experiment show that the average air velocity can more accurately reflect the cleaning performance. The mathematical function of the relation curve is Y = 11.71X − 4.76, and the prediction error is within 9.4%. The air velocity in the middle area of the vibrating screen is approximately in proportion to the cleaning performance, which provides the theoretical and experimental basis for the design of the threshing and cleaning device and the adjustment of the working parameters in the field harvest. In addition, it can save the design time and cost and reduce the seasonal impact of field experiment.


Author(s):  
Jie Zhu ◽  
Soo Sien Seah ◽  
Irene Tee ◽  
Bing Hai Liu ◽  
Eddie Er ◽  
...  

Abstract In this paper, we describe automated FIB for TEM sample preparation using iFast software on a Helios 450HP dual-beam system. A robust iFast automation recipe needs to consider as many variables as possible in order to ensure consistent sample quality and high success rate. Variations mainly come from samples of different materials, structures, surface patterns, surface topography and surface charging. The recipe also needs to be user-friendly and provide high flexibility by allowing users to choose preferable working parameters for specific types of samples, such as: grounding, protective layer coating, milling steps, and final TEM lamella thickness/width. In addition to the iFast recipe, other practical factors affecting automation success rate are also discussed and highlighted.


2020 ◽  
pp. 341-350
Author(s):  
Di Wang ◽  
Changbin He ◽  
Haiqing Tian ◽  
Liu Fei ◽  
Zhang Tao ◽  
...  

Low productivity and high electricity consumption are considered problems of the hammer mill, which is widely used in current feed production. In this paper, the mechanical properties of corn grain ground by a hammer mill were analysed, and the key factors affecting the performance of the hammer mill were determined. The single-factor experiment and three-factor, three-level quadratic regression orthogonal experiment were carried out with the spindle speed, corn grain moisture content and number of hammers as experimental factors and the productivity and electricity consumption per ton as evaluation indexes. The results showed that the order of influence on the productivity was spindle speed > corn grain moisture content > number of hammers and that the order of influence on the electricity consumption per ton was corn grain moisture content > spindle speed > number of hammers. The parameters were optimized based on the response surface method with the following results: the spindle speed was 4306 r/min, the corn grain moisture content was 10%, and the number of hammers was 24. The validation experiment was carried out with the optimal parameters’ combination. The productivity and electricity consumption per ton were 988.12 kg/h and 5.37 kW·h/t, respectively, which were consistent with the predicted results of the model.


2021 ◽  
Vol 64 (4) ◽  
pp. 1247-1258
Author(s):  
Yang Li ◽  
Lizhang Xu ◽  
Zhipeng Gao ◽  
En Lu ◽  
Yaoming Li

HighlightsThe relationship of vibration and header loss was studied by multi-point vibration measurement and loss collection test.There was an approximately linear positive correlation between total header vibration and total rapeseed header loss.The header frame was analyzed and optimized through modal simulation and testing.The total rapeseed header loss of the improved header was reduced by 33.2% to 46.9%.Abstract. In view of the current large rapeseed header losses of rape combine harvesters, the effects of the header on rapeseed header loss were studied from the perspective of vibration. First, the vibrations at various measuring points on the header during rape harvest were studied using a data acquisition and analysis system while performing collection tests of rapeseed header loss with the sample slot method. The relationships between total header vibration and total rapeseed header loss and between vertical cutter vibration and rapeseed vertical cutter loss were shown to have a positive correlation, and they all increased with the increase in engine speed. Vertical cutter loss accounted for 31.2% to 42.4% of the total rapeseed header loss. Modal analysis and optimization of the header frame were then performed by simulation and test. The natural frequencies of the first-order and second-order modes of the optimized header were increased, and the possibility of resonance with other working parts was eliminated. Finally, the improved header was tested during rape harvest. The results showed that the total vibration of the improved header was reduced by 19.9% to 43.9%, and the total rapeseed header loss was reduced by 33.2% to 46.9%. The vertical cutter vibration was reduced by 30.5% to 49.8%, and the rapeseed vertical cutter loss was reduced by 20.8% to 34.7%. In addition, the vibration and rapeseed loss of the improved header had relatively slow rates of increase with the increase in engine speed. The method of reducing rapeseed loss by reducing the header vibration achieved an obvious and positive effect. Keywords: Frame optimization, Modal analysis, Rape combine harvester, Rapeseed header loss, Vibration.


2021 ◽  
Vol 37 (6) ◽  
pp. 1005-1014
Author(s):  
Guoliang Wei ◽  
Qingsong Zhang ◽  
Biao Wang ◽  
QingXi Liao

HighlightsThe seeder combined the plowing and rotating tillage to overcome the heavy soil and a large amount of straws.The plow could lift and turn the soil and straw before rotary tillage.The optimal working parameters of the seeder were obtained by orthogonal field experiments.Abstract. Rapeseed, one of the most important oil crops in China, is mainly planted in the mid-lower reaches of the Yangtze River. However, limited by the special long-term rice-rapeseed rotation, rotary tillage is applied in most of the planted areas apply instead of plow tillage, leading to a shallow arable layer. On the other hand, maintaining a high-quality seedbed for rapeseed becomes a challenge because a large amount of straw remains buried in the soil. As a solution, a rapeseed direct seeder that combines plow tillage and rotary tillage was designed. The structure of the plowing unit, whose key components were a lifting-turning plow and symmetrical plow, was analyzed based on the forming principle of the plow. Furthermore, a mechanical soil throwing model of the rotary tillage blade was built to determine the structural parameters. Then, the interaction between the rotary tillage unit and the lift-turning plow was analyzed. Finally, the performance and optimal parameters were evaluated by orthogonal field experiments. The seedbed after the operations indicated that the seeder could achieve the function of turning the soil and straw first and then rotating the soil with good passability, mixing the straw and the soil, flattening the surface of the seed bed, and stabilizing the tillage depth. Orthogonal experiments showed that the optimal working parameters of the seeder were as follows: the tillage depth was 180 mm, the equipment forward speed was 2.1 km/h, and the speed of the rotary tillage blade was 250 r/min. Under the optimal parameter combination, the power consumption of the seeder, the thickness of the tillage layer, the crop residue burial efficiency, the soil breakage efficiency, and the flatness of the seed bed surface were 30.48 kW, 231 mm, 90.88%, 93.26%, and 21.15 mm, respectively. The working performance of the seeder could meet the tillage requirements of rapeseed planting. Keywords: Direct seeder, Evaluation, Plow, Plowing-rotating combined tillage, Rapeseed.


2021 ◽  
Vol 283 ◽  
pp. 02041
Author(s):  
Yibing Chen ◽  
Xiao Liang ◽  
Yizhuo Fu

With the acceleration of urbanization and the shortage of transportation resources in large cities, urban rail transit has gradually become the backbone of urban public transportation system. In order to improve the service level of urban rail transit, this paper studies the factors influencing the service level of subway station passages and the classification method based on the passenger-perception method. Through investigation and research, the passage service level evaluation indicators (width, walking time, per capita area, illumination intensity and guide signage) have been determined. Based on orthogonal experiment, 3ds max was used to set up 25 passage scenes with different parameters from passengers' perspective. A passenger satisfaction questionnaire was designed and distributed, the reliability and validity of the questionnaire were tested to ensure the validity of the data. And based on the factor analysis method, the factors affecting passenger perception are analyzed. A well-fitting model of the relationship between passenger scores and passage parameters is established, and the passenger scores are converted into service levels. Finally, a service level classification method is given, which can provide reference for the service level evaluation of existing stations and the design of physical attributes and environmental factors of new station passages.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 617
Author(s):  
Jing Li ◽  
Wanwan Chen ◽  
Yongwei Zhu

Ultrasonic vibration-composited electrolysis/electro-discharge machining technology (UE/DM) is effective for machining particulate-reinforced metal matrix composites (MMCs). However, the vibration of the tool or workpiece suitable for holes limits the application of UE/DM. To improve the generating machining efficiency and quality of flat and curved surfaces, in this study, we implemented two-dimensional ultrasonic vibration into UE/DM and constructed a novel method named two-dimensional ultrasonic vibration-composited electrolysis/electro-discharge machining (2UE/DM). The influence of vibration on the performance of 2UE/DM compared to other process technologies was studied, and an orthogonal experiment was designed to optimize the parameters. The results indicated that the materiel remove rate (MRR) mainly increased via voltage and tool vibration. The change current was responsible for the MRR in the process. Spindle speed and workpiece vibration were not dominant factors affecting the MRR; the spindle speed and tool and workpiece vibration, which reduced the height difference between a ridge and crater caused by abrasive grinding, were responsible for surface roughness (Ra) and form precision (δ). Additionally, the optimized parameters of 1000 rpm, 3 V, and 5 um were conducted on MMCs of 40 SiCp/Al and achieved the maximum MRR and minimum Ra and δ of 0.76 mm3/min, 3.35 um, and 5.84%, respectively. This study’s findings provide valuable process parameters for improving machining efficiency and quality for MMCs of 2UE/DM.


Author(s):  
Mariana DUMITRU

The purpose of the paper is to present some researches made on the mechanisms of the combine for cutting, feeding and threshing. There are presented the floating cutter bar, the combine with a spike-tooth cylinder and rotary separation, the combine with dual threshing and separating rotors. Some of the adjustments are made on the finger sensors for cutter bar. One of the most important adjustment is that made in order to reduce harvest loss. Forward speed is one of the main factor in optimizing the performance of a combine harvester. The method used in the paper is that of direct observing and measuring made on different component parts of combines.


2020 ◽  
Vol 11 ◽  
pp. 160-169
Author(s):  
Mao Hanping ◽  
Wang Jiahui ◽  
Xing Gaoyong ◽  
Zuo Zhiyu ◽  
Li Qinglin

Aiming at the problems of the single control scheme, the few aspects of monitoring and diagnosis, and the large delay time of the plot combine harvester, this paper designs the forward speed control algorithm of the plot Chinese cabbage seed harvester. This paper studies the theory of association rules, has used SQL Server to build a database including the job parameters of the main monitoring objects, and has mined the association rules between the job parameters and the feed amount through Analysis Service. Combining the knowledge of association rules and ordinary fuzzy PID algorithm, the article has built a model and performed simulation verification. The results show that the algorithm can adjust the forward speed reasonably and quickly when the feed volume increases.


2021 ◽  
Vol 37 (4) ◽  
pp. 615-621
Author(s):  
Jing Bai ◽  
Shaochun Ma ◽  
Jiwei Hu ◽  
Yi Wei ◽  
Fenglei Wang ◽  
...  

Highlights This article focuses on the tensile properties of sugarcane leaves. The moisture content and sheath diameter were selected as test factors, and the test index was the stalk-leaf connecting force. The load-displacement curves of stalks and leaves were plotted. Two-way ANOVA was also discussed. Abstract . The tensile properties of sugarcane leaves are critical factors affecting the harvesting quality of sugarcane harvesters. Thus, it is important to investigate the tensile properties of sugarcane stalks and leaves. The selected test factors were leaf moisture content and sheath diameter, and the stalk-leaf connecting force was selected as test index. The tests were conducted with two moisture content levels of 15% and 20%, and three sheath diameters of 22, 26, and 30 mm. The stress-strain curves of stalks and leaves were plotted to show how the tensile force varied during the tensile test. The results showed that there was a strong linear correlation between the stalk-leaf connecting force and diameter of leaf sheath, and the connecting force also increased with the increasing moisture content. In addition, leaf tensile forces in longitudinal direction were much larger than in transverse direction. Two-way ANOVA revealed that both of the moisture contents (A) and sheath diameters (B) had significant effects on the stalk-leaf connecting force (p < 0.01), however, the interaction between A and B was not significant (p > 0.1). This study provides a theoretical reference for the design and improvement of crop dividers of sugarcane harvester. Keywords: Moisture content, Sheath diameter, Stalk-leaf connecting force, Sugarcane leaves, Universal testing machine, Tensile properties.


Sign in / Sign up

Export Citation Format

Share Document