Simulating Evapotranspiration and Yield Response of Selected Corn Varieties under Full and Limited Irrigation in the Texas High Plains Using DSSAT-CERES-Maize

2017 ◽  
Vol 60 (3) ◽  
pp. 837-846 ◽  
Author(s):  
Gary W. Marek ◽  
Thomas H. Marek ◽  
Qingwu Xue ◽  
Prasanna H. Gowda ◽  
Steven R. Evett ◽  
...  

Abstract. Water scarcity due to drought and groundwater depletion has led to increased interest in deficit irrigation strategies that reduce irrigation requirements while maintaining profitable yields. This has resulted in an increase in the number of modeling studies aimed at evaluating crop response to limited irrigation strategies. However, the ability of widely used crop simulation models to accurately represent responses to limited irrigation has not been thoroughly evaluated. The primary objective of this study was to determine the efficacy of DSSAT-CERES-Maize (ver. 4.6.1.0) to simulate leaf area index (LAI), crop evapotranspiration (ET), and yield response to full (100%) and limited (75% and 50%) irrigation regimes for two corn varieties. Comparisons of simulated and measured data from full and limited irrigation treatments of` two drought-tolerant corn hybrids (DuPont Pioneer AQUAmax P1151HR and Pioneer 33D49) grown in the Texas Panhandle in 2013 and 2014 were evaluated. Simulated in-season daily crop ET values for P1151HR grown in 2013 were also compared to those measured by precision large weighing lysimeters at Bushland, Texas. Additionally, a comparison of simulated and measured soil water content (SWC) within the root zone was performed for P1151HR grown in 2013. Simulated LAI for fully irrigated treatments approximated measured values reasonably well, although manipulation of plant genetic parameters failed to match measured LAI during the period between maximum LAI and the beginning of crop senescence in the 50% irrigation treatments. Similarly, simulated yield values approximated measured values for the fully irrigated treatments, while considerable overestimation of yield occurred in the limited irrigation treatments for both varieties. However, consistent overestimation of both LAI and yield for the limited irrigation treatments suggests a functional relationship between LAI and yield. Further, DSSAT overestimated crop ET by 16% for fully irrigated P1151HR and by 40% for limited irrigation treatments in 2013 as compared to measured lysimeter values. Corresponding underestimations of SWC were also observed in neutron probe measurements for both treatments. Overestimation of ET and yield and corresponding underestimation of SWC in limited irrigation treatments were mainly due to overestimation of LAI in those treatments, indicating a potential deficiency in the water stress algorithms. Additional comparisons of agronomic and lysimeter-based water balance data are needed to corroborate the findings of this study. Further investigations into the calculation of reference evapotranspiration (ETo), crop coefficients, and water stress functions in DSSAT are needed in order to provide suggestions for model improvement. Keywords: TCERES-Maize, Crop modeling, DSSAT, Evapotranspiration, Limited irrigation, Lysimeters, Maize, Semi-arid, Sprinkler irrigation, Weighing lysimeters.

2018 ◽  
Vol 61 (5) ◽  
pp. 1653-1666 ◽  
Author(s):  
Huihui Zhang ◽  
Robert Wayne Malone ◽  
Liwang Ma ◽  
Lajpat R. Ahuja ◽  
Saseendran S. Anapalli ◽  
...  

Abstract. Accurate quantification and management of crop evapotranspiration (ET) are critical to optimizing crop water productivity for both dryland and irrigated agriculture, especially in the semiarid regions of the world. In this study, four weighing lysimeters in Bushland, Texas, were planted to maize in 1994 with two fully irrigated and two non-irrigated for measuring crop ET. The Root Zone Water Quality Model (RZWQM2) was used to evaluate soil water balance and crop production with potential evapotranspiration (PET) estimated from either the Shuttleworth-Wallace method (PTSW) or the ASCE standardized alfalfa reference ET multiplied by crop coefficients (PTASCE). As a result, two water stress factors were defined from actual transpiration (AT) and were tested in the model against the lysimeter data, i.e., AT/PTSW and AT/PTASCE. For both water stress factors, the simulated daily ET values were reasonably close to the measured values, with underestimated ET during mid-growing stage in both non-irrigated lysimeters. Root mean squared deviations (RMSDs) and relative RMSDs (RMSD/observed mean) values for leaf area index, biomass, soil water content, and daily ET were within simulation errors reported earlier in the literature. For example, the RMSDs of simulated daily ET were less than 1.52 mm for all irrigated and non-irrigated lysimeters. Overall, ET was simulated within 3% of the measured data for both fully irrigated lysimeters and undersimulated by less than 11% using both stress factors for the non-irrigated lysimeters. Our results suggest that both methods are promising for simulating crop production and ET under irrigated conditions, but the methods need to be improved for dryland and non-irrigated conditions. Keywords: ET, RZWQM modeling, Stress factor, Weighing lysimeter.


1983 ◽  
Vol 34 (6) ◽  
pp. 661 ◽  
Author(s):  
RJ Lawn

The effect of spatial arrangement and population density on growth, dry matter production, yield and water use of black gram (Vigna mungo cv. Regur), green gram (V. radiata cv. Berken), cowpea (V. unguiculata CPI 28215) and soybean (Glycine rnax CP126671), under irrigated, rain-fed fallowed and rain-fed double-cropped culture was evaluated at Dalby in south-eastern Queensland. Equidistant spacings increased initial rates of leaf area index (LAI) development and crop water use compared with 1-m rows at the same population densities. In the irrigated and rain-fed fallowed treatments, where more water was available for crop growth, both seed yields and total crop water use were higher in the equidistant spacings. However, in the double-cropped treatment, where water availability was limited, there was no yield difference between rows and equidistant spacings, primarily because initially faster growth in the latter was offset by more severe water stress later in the season. Higher population density also increased initial crop growth rate and water use, particularly in the equidistant spacings. However, there was no significant yield response to density, presumably because subsequent competition for light/ water offset initial effects on growth. Although absolute yield differences existed between legume cultivars within cultural treatments, there were no significant differential responses to either spatial arrangement or population density among these four cultivars.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 531d-531
Author(s):  
Dan Drost

In 1992, a long term study was initiated to determine water use of asparagus and to assess water stress effects on asparagus growth. Asparagus (Syn 4-56) crowns were planted and maintained at soil moisture levels near field capacity during the first year. In 1993, irrigation treatments based on 60, 40, and 0 percent of evapotranspiration (ET) were applied to asparagus during the fern growing period (mid-June to October). Soil moisture, shoot and root growth, and fern water potentials were measured throughout the year. Prior to the irrigation treatments, asparagus had 39 buds per plant with a shoot and root fresh weight of 573 and 270 grams, respectively. Soil moisture in the root zone (0 to 60 cm) approached the permanent wilting point in the 40%. and 0% of ET treatments by mid-August. A decrease in irrigation rate from 80 to 0% of ET had no effect on fern fresh weight at the end of the growing season. However, as irrigation rate decreased from 80 to 0% of ET, root fresh weight (586, 533, 415 grams) and bud number (78, 59, 53) decreased linearly. These results suggest yield and growth may be reduced in 1994.


2010 ◽  
Vol 14 (10) ◽  
pp. 2099-2120 ◽  
Author(s):  
J. P. Kochendorfer ◽  
J. A. Ramírez

Abstract. The statistical-dynamical annual water balance model of Eagleson (1978) is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985) canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM). The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green leaf area index (LAI) suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration). Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends to be most productive in sandier soils despite their lower water holding capacity. Although the determination of LAI based on complete or near-complete utilization of soil moisture is not a new approach in ecohydrology, this paper demonstrates its use for the first time with a new monthly statistical-dynamical model of the water balance. Accordingly, the SDEM provides a new framework for studying the controls of soil texture and climate on vegetation density and evapotranspiration.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 241 ◽  
Author(s):  
Quanxiao Fang ◽  
L. Ma ◽  
R. D. Harmel ◽  
Q. Yu ◽  
M. W. Sima ◽  
...  

An important but rarely studied aspect of crop modeling is the uncertainty associated with model calibration and its effect on model prediction. Biomass and grain yield data from a four-year maize experiment (2008–2011) with six irrigation treatments were divided into subsets by either treatments (Calibration-by-Treatment) or years (Calibration-by-Year). These subsets were then used to calibrate crop cultivar parameters in CERES (Crop Environment Resource Synthesis)-Maize implemented within RZWQM2 (Root Zone Water Quality Model 2) using the automatic Parameter ESTimation (PEST) algorithm to explore model calibration uncertainties. After calibration for each subset, PEST also generated 300 cultivar parameter sets by assuming a normal distribution of each parameter within their reported values in the literature, using the Latin hypercube sampling (LHS) method. The parameter sets that produced similar goodness of fit (11–164 depending on subset used for calibration) were then used to predict all the treatments and years of the entire dataset. Our results showed that the selection of calibration datasets greatly affected the calibrated crop parameters and their uncertainty, as well as prediction uncertainty of grain yield and biomass. The high variability in model prediction of grain yield and biomass among the six (Calibration-by-Treatment) or the four (Calibration-by-Year) scenarios indicated that parameter uncertainty should be considered in calibrating CERES-Maize with grain yield and biomass data from different irrigation treatments, and model predictions should be provided with confidence intervals.


2008 ◽  
Vol 5 (2) ◽  
pp. 579-648
Author(s):  
J. P. Kochendorfer ◽  
J. A. Ramírez

Abstract. The statistical-dynamical annual water balance model of Eagleson (1978) is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985) canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM). The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green Leaf Area Index (LAI) suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration). Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends to be most productive in sandier soils despite their lower water holding capacity. Although the determination of LAI based on near-complete utilization of soil moisture is not a new approach in ecohydrology, this paper demonstrates its use for the first time with a new monthly statistical-dynamical model of the water balance. Accordingly, the SDEM provides a new framework for studying the controls of soil texture and climate on vegetation density and evapotranspiration.


2015 ◽  
Vol 66 (10) ◽  
pp. 993 ◽  
Author(s):  
Attila Yazar ◽  
Çigdem Incekaya ◽  
S. Metin Sezen ◽  
Sven-Erik Jacobsen

Field experiments were set up in order to evaluate the yield response of quinoa (Chenopodium quinoa Willd. cv. Titicaca) to irrigation with saline and fresh water under Mediterranean climate from 2010 to 2012 in Adana, Turkey. Irrigation treatments in 2010 and 2011 comprised full irrigation with fresh water, full irrigation with saline water of different salt concentrations (40, 30, 20, 10 dS m–1), deficit irrigations with fresh water (50%, 75% of full irrigation), partial root-zone drying, and deficit irrigation with saline water of 40 dS m–1 (50%). In 2012, in addition to the full irrigation treatments, two deficit irrigation levels of 67% and 33% of full irrigation with fresh or saline (30, 20, 10 dS m–1) water were considered. The results indicated that grain yields were slightly reduced by irrigation water salinity up to 30 dS m–1 compared with fresh water irrigation. Salinity and drought stress together interfered considerably with crop grain and biomass yields. However, salinity stress alone did not interfere with grain and biomass yield significantly; therefore, quinoa may be defined as a crop tolerant to salinity. Yield parameters such as aboveground biomass, seed yield and harvest index suggested a good adaptation of quinoa cv. Titicaca to Mediterranean environments.


1994 ◽  
Vol 45 (1) ◽  
pp. 19 ◽  
Author(s):  
MJ Robertson ◽  
F Giunta

Spring wheat cv. Yecora 70 was exposed to soil water deficits during three phases between emergence and anthesis: early (22 days after sowing to terminal spikelet), mid (terminal spikelet to anthesis) and late (early boot to anthesis). The objective was to quantify the effects of water stress on partitioning of above-ground biomass to the spike, the ratio between kernel number and anthesis spike weight, canopy expansion, radiation interception and phenology. This information can be used to test the assumptions used when modelling wheat growth and yield under water-limiting conditions. The extension rate of the lamina and pseudostem was reduced when more than 50% of the extractable soil water had been extracted from the root-zone, independent of the stage when stress was imposed. Stress reduced biomass accumulation more through a reduction of the amount of radiation intercepted than reduced radiation-use efficiency. The reduction in the amount of radiation intercepted was due to lower leaf area index, as the radiation extinction coefficient was similar under stress and non-stress conditions. Stress treatments reduced spike biomass at anthesis to 58-94% of that in the well-watered control, but had little effect on the pattern of biomass partitioning to the spike and the proportion of anthesis biomass as spike. Stress after terminal spikelet reduced the ratio of kernel number to anthesis spike weight by 50%, suggesting that reduced kernel number under stress may not be solely due to a restricted assimilate supply. This study showed that current assumptions are valid regarding the response of wheat to pre-anthesis stress in terms of canopy expansion, radiation interception and biomass partitioning to the spike. However, the constancy of the ratio of kernel number to anthesis spike weight was shown not to hold under water stress.


2021 ◽  
Vol 13 (5) ◽  
pp. 954
Author(s):  
Abhilash K. Chandel ◽  
Lav R. Khot ◽  
Behnaz Molaei ◽  
R. Troy Peters ◽  
Claudio O. Stöckle ◽  
...  

Site-specific irrigation management for perennial crops such as grape requires water use assessments at high spatiotemporal resolution. In this study, small unmanned-aerial-system (UAS)-based imaging was used with a modified mapping evapotranspiration at high resolution with internalized calibration (METRIC) energy balance model to map water use (UASM-ET approach) of a commercial, surface, and direct-root-zone (DRZ) drip-irrigated vineyard. Four irrigation treatments, 100%, 80%, 60%, and 40%, of commercial rate (CR) were also applied, with the CR estimated using soil moisture data and a non-stressed average crop coefficient of 0.5. Fourteen campaigns were conducted in the 2018 and 2019 seasons to collect multispectral (ground sampling distance (GSD): 7 cm/pixel) and thermal imaging (GSD: 13 cm/pixel) data. Six of those campaigns were near Landsat 7/8 satellite overpass of the field site. Weather inputs were obtained from a nearby WSU-AgWeatherNet station (1 km). First, UASM-ET estimates were compared to those derived from soil water balance (SWB) and conventional Landsat-METRIC (LM) approaches. Overall, UASM-ET (2.70 ± 1.03 mm day−1 [mean ± std. dev.]) was higher than SWB-ET (1.80 ± 0.98 mm day−1). However, both estimates had a significant linear correlation (r = 0.64–0.81, p < 0.01). For the days of satellite overpass, UASM-ET was statistically similar to LM-ET, with mean absolute normalized ET departures (ETd,MAN) of 4.30% and a mean r of 0.83 (p < 0.01). The study also extracted spatial canopy transpiration (UASM-T) maps by segmenting the soil background from the UASM-ET, which had strong correlation with the estimates derived by the standard basal crop coefficient approach (Td,MAN = 14%, r = 0.95, p < 0.01). The UASM-T maps were then used to quantify water use differences in the DRZ-irrigated grapevines. Canopy transpiration (T) was statistically significant among the irrigation treatments and was highest for grapevines irrigated at 100% or 80% of the CR, followed by 60% and 40% of the CR (p < 0.01). Reference T fraction (TrF) curves established from the UASM-T maps showed a notable effect of irrigation treatment rates. The total water use of grapevines estimated using interpolated TrF curves was highest for treatments of 100% (425 and 320 mm for the 2018 and 2019 seasons, respectively), followed by 80% (420 and 317 mm), 60% (391 and 318 mm), and 40% (370 and 304 mm) of the CR. Such estimates were within 5% to 11% of the SWB-based water use calculations. The UASM-T-estimated water use was not the same as the actual amount of water applied in the two seasons, probably because DRZ-irrigated vines might have developed deeper or lateral roots to fulfill water requirements outside the irrigated soil volume. Overall, results highlight the usefulness of high-resolution imagery toward site-specific water use management of grapevines.


Sign in / Sign up

Export Citation Format

Share Document