scholarly journals Peptide profiling of goat milk fermented by Lactobacillus delbrueckii ssp. delbrueckii BD7: Identification of potential biological activity

2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Yuliana Tandi Rubak ◽  
Lilis Nuraida ◽  
Dyah Iswantini ◽  
Endang Prangdimurti ◽  
Maxs Urias Ebenhaizar Sanam

Abstract. Rubak YT, Nuraida L, Iswantini D, Prangdimurti E, Sanam MUE. 2021. Peptide profiling of goat milk fermented by Lactobacillus delbrueckii ssp. delbrueckii BD7: Identification of potential biological activity. Biodiversitas 22: 3136-3145. This study investigated the angiotensin-converting enzyme (ACE) inhibitory activity in fermented goat milk by Lactobacillus delbrueckii ssp. delbrueckii BD7, characterizing the peptide and its potential as a bioactive peptide. The starter culture (2%) was inoculated into pasteurized goat skim milk (11%), then incubated at 37 °C until it reached pH 4.6. Centrifugation at 6000 g x 10 minutes at 4 °C was applied. The supernatant obtained was then ultrafiltrated using a membrane cut-off with a molecular weight of 3 kDa, and the fraction obtained was analyzed to determine the inhibitory activity of ACE. Peptides were characterized using Nano LC / MS / MS, and identification as bioactive peptides was carried out based on a literature review. ACE inhibitory activity of fermented goat milk of Lb. delbrueckii ssp. delbrueckii BD7 was 55.98 ± 3.53%. A total of 157 peptides were released with molecular weights ranging from 770.78 - 2081.12 Da and having 7-19 amino acid residues. The main peptide was hydrolyzed from casein (72.6%), cleavage in the parent protein, specific for aliphatic and aromatic amino acids. Identification of bioactive peptides based on the similarity of amino acid residues at C-terminal obtained 28 ACE inhibitor peptides, 19 antioxidant peptides, and ten antimicrobial peptides. Some of these peptides have homologous sequences with previously reported peptides. Lb. delbrueckii ssp. delbrueckii BD7 has the potential as a starter culture to produce fermented milk, which is rich in biological activity.

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 101 ◽  
Author(s):  
Guowei Shu ◽  
Jie Huang ◽  
Chunju Bao ◽  
Jiangpeng Meng ◽  
He Chen ◽  
...  

Angiotensin I-converting enzyme (ACE) peptides are bioactive peptides that have important value in terms of research and application in the prevention and treatment of hypertension. While widespread literature is concentrated on casein or whey protein for production of ACE-inhibitory peptides, relatively little information is available on selecting the proper proteases to hydrolyze the protein. In this study, skimmed cow and goat milk were hydrolyzed by four commercial proteases, including alkaline protease, trypsin, bromelain, and papain. Angiotensin I-converting enzyme-inhibitory peptides and degree of hydrolysis (DH) of hydrolysates were measured. Moreover, we compared the difference in ACE-inhibitory activity between cow and goat milk. The results indicated that the DH increased with the increase in hydrolysis time. The alkaline protease-treated hydrolysates exhibited the highest DH value and ACE-inhibitory activity. Additionally, the ACE-inhibitory activity of hydrolysates from goat milk was higher than that of cow milk-derived hydrolysates. Therefore, goat milk is a good source to obtain bioactive peptides with ACE-inhibitory activity, as compared with cow milk. A proper enzyme to produce ACE-inhibitory peptides is important for the development of functional milk products and will provide the theoretical basis for industrial production.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4635
Author(s):  
Samuchaya Ngamsuk ◽  
Tzou-Chi Huang ◽  
Jue-Liang Hsu

Gac (Momordica cochinchinensis Spreng.) seed proteins (GSPs) hydrolysate was investigated for angiotensin I-converting enzyme (ACE) inhibitory activities. GSPs were hydrolyzed under simulated gastrointestinal digestion using a combination of enzymes, including pepsin, trypsin, and chymotrypsin. The screening of ACE inhibitory peptides from GSPs hydrolysate was performed using two sequential bioassay-guided fractionations, namely hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC). Then, the peptides in the fraction with the highest ACE inhibitory activity were identified by LC-MS/MS. The flow-through (FT) fraction showed the most potent ACE inhibitory activity when HILIC fractionation was performed. This fraction was further separated using RP-HPLC, and the result indicated that fraction 8 (RP-F8) showed the highest ACE inhibitory activity. In the HILIC-FT/RP-F8 fraction, 14 peptides were identified using LC-MS/MS analysis coupled with de novo sequencing. These amino acid chains had not been recorded previously and their ACE inhibitory activities were analyzed in silico using the BIOPEP database. One fragment with the amino acid sequence of ALVY showed a significant ACE inhibitory activity (7.03 ± 0.09 µM). The Lineweaver-Burk plot indicated that ALVY is a competitive inhibitor. The inhibition mechanism of ALVY against ACE was further rationalized through the molecular docking simulation, which revealed that the ACE inhibitory activities of ALVY is due to interaction with the S1 (Ala354, Tyr523) and the S2 (His353, His513) pockets of ACE. Bibliographic survey allowed the identification of similarities between peptides reported as in gac fruit and other proteins. These results suggest that gac seed proteins hydrolysate can be used as a potential nutraceutical with inhibitory activity against ACE.


2021 ◽  
Vol 9 (11) ◽  
pp. 2238
Author(s):  
Gwangsu Ha ◽  
Hee-Jong Yang ◽  
Myeong-Seon Ryu ◽  
Su-Ji Jeong ◽  
Do-Youn Jeong ◽  
...  

Traditionally made Kochujang (TMK) is a long-term fermented soybean and rice mixture with red pepper and salts. The ambient bacteria in rice straw and nutrient components of Kochujang influence the bacteria community. We aimed to investigate the bacterial composition and quality of TMK from different provinces of Korea: Chungcheung (CC), Jeolla (JL), Kyungsang (KS), and GeongGee plus Kangwon (GK) provinces, and Jeju island (JJ). Furthermore, Bacillus spp. isolated from TMK were studied to have anti-cerebrovascular disease activity and probiotic properties. Seventy-three TMK samples from different regions were collected to assess the biogenic amine contents, bacteria composition using next-generation methods, and bacterial functions using Picrust2. Bacillus spp. was isolated from the collected TMK, and their antioxidant, fibrinolytic, and angiotensin I conversion enzyme (ACE) inhibitory activities and probiotic properties were examined. KS TMK had lower sodium contents than the other TMK. There were no significant differences in histamine and tyramine contents among the TMK samples in different provinces. The predominant bacteria in TMK was Bacillus spp., but KS included much less Bacillus spp. and higher Enterococcus and Staphylococcus than the other TMK. Gene expression related to lipopolysaccharide biosynthesis was higher in KS TMK than the other TMK in Picrust2. The predominant Bacillus spp. isolated from TMK was B. subtilis and B. velezensis. B. subtilis SRCM117233, SRCM117245, and SRCM117253 had antioxidant activity, whereas B. subtilis had higher fibrinolytic activity than other Bacillus spp. Only B. velezensis SRCM117254, SRCM117311, SRCM117314, and SRCM117318 had over 10% ACE inhibitory activity. In conclusion, KS had less Bacillus related to lower sodium contents than the other TMK. The specific strains of B. subtilis and B. velezensis had antioxidant, fibrinolytic, and ACE inhibitory activity, and they can be used as a starter culture to produce better quality controlled Kochujang with anti-cerebrovascular disease activities.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 879
Author(s):  
Ramya Jayaprakash ◽  
Conrad O. Perera

Proteins from fresh New Zealand green-lipped mussels were hydrolyzed for 240 min using pepsin and alcalase. The extent of the hydrolysis, antioxidant, antimicrobial, and angiotensin-converting enzyme (ACE) inhibitory activities of each protein hydrolysate were investigated. Peptides obtained from pepsin hydrolysis after 30 min, named GPH, exhibited the highest antioxidant and ACE inhibitory activity, but no antimicrobial activity. Purification of the GPH using gel-filtration chromatography revealed that the protein fraction (GPH-IV*) containing peptides with a molecular weight (MW) below 5 kDa had the strongest antioxidant and ACE inhibitory activities. Further purification was done using reverse-phase HPLC (RP-HPLC) and the only major peak obtained (GPH-IV*-P2) had the highest antioxidant and ACE inhibitory activity. From this fraction, several bioactive peptides with an MW ≈ 5 kDa were identified using LC-MS and in silico analyses. This research highlights that green-lipped mussel protein hydrolysates could be used as a good source of bioactive peptides with potential therapeutic applications.


Fermentation ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 19 ◽  
Author(s):  
Miguel A. Mazorra-Manzano ◽  
Glen R. Robles-Porchas ◽  
Daniel A. González-Velázquez ◽  
María J. Torres-Llanez ◽  
Marcel Martínez-Porchas ◽  
...  

Cheese whey contains about 20% of the total milk protein and has high nutritional and technological value, as well as attractive biological properties. Whey protein represents an important source of bioactive peptides with beneficial effects on health (e.g., antioxidant, antidiabetic, antihypertensive, etc.). Microbiota in cheese whey can hydrolyze proteins and generate bioactive peptides through a fermentation process. The objective of this study was to evaluate the effect of temperature on the fermentation of cheese whey by its native microbiota, and the action of microbial proteolytic activity on whey proteins to release peptides with inhibitory activity of the angiotensin-converting enzyme (ACE). Whey proteins hydrolysis occurred at all incubation temperatures evaluated (32–50 °C), with the major proteolytic effect within the range of 35–42 °C. Minor whey proteins (i.e., Lf, bovine serum albumin (BSA), and IgG) were more susceptible to degradation, while β-lactoglobulin and α-lactalbumin showed major resistance to microbial proteolytic action. Alfa-amino groups increased from 36 to 360–456 µg Gly/mL after 120 h of fermentation. A higher lactic acid production (11.32–13.55 g/L) and lower pH (3.3–3.5) were also observed in the same temperature range (32–42 °C). In addition, ACE-inhibitory activity increased from 22% (unfermented whey) to 60–70% after 120 h of fermentation. These results suggest that the fermentation of cheese whey by its native microbiota represents an attractive process to give value to whey for the production of whey-based beverages or functional foods with potential antihypertensive properties.


2017 ◽  
Vol 3 (4) ◽  
pp. 231-240 ◽  
Author(s):  
A. Cito ◽  
M. Botta ◽  
V. Francardi ◽  
E. Dreassi

Hypertension is well known as one of the major risk for cardiovascular diseases which annually affect millions of people. The angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation process. Indeed, hypertension treatment by synthetic ACE inhibitors (e.g. captopril, lisinopril and ramipril) is effective; however, their use can cause serious side effects, such as hypotension, cough, reduced renal function and angioedema. Thus, research was focused on natural ACE inhibitory peptides sources such as foodstuffs and also, more recently, edible insects. In the last decades, ACE inhibitory activity has been detected in protein hydrolysates from insect species belonging to the orders of Coleoptera, Diptera, Hymenoptera, Lepidoptera and also Orthoptera. Further investigations led to identify specific ACE inhibitory peptides from the silkworm Bombyx mori (Lepidoptera: Bombycidae), the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae), the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae) and also from the weaver ant Oecophylla smaragdina (Hymenoptera: Formicidae). Even if ACE inhibitory activity of these bioactive peptides has been in vitro assayed and is comparable to those of some bioactive peptides derived from other animal protein sources, the in vivo effectiveness of most of these bioactive peptides still needs to be confirmed. The aim of this review is to present an outline of the currently available data on the potential use of insects for hypertension treatment with a focus on the ACE inhibitory peptides identified in these invertebrates to date.


2013 ◽  
Vol 80 (2) ◽  
pp. 214-222 ◽  
Author(s):  
Francisco Javier Espejo-Carpio ◽  
Raúl Pérez-Gálvez ◽  
Emilia M Guadix ◽  
Antonio Guadix

Goat milk protein was hydrolysed with subtilisin and trypsin. As input variables, temperature was assayed in the interval 45–70 °C for subtilisin and 30–55 °C for trypsin, while the enzyme-substrate ratio varied from 1 to 5%. The effect of the input variables on the degree of hydrolysis and ACE-inhibitory activity (output variables) was modelled by second order polynomials, which were able to fit the experimental data with deviations below 10%. The individual maximum values of the degree of hydrolysis and the ACE-inhibitory activity were found at conflicting conditions of temperature and enzyme-substrate ratio. Since such maximum values could not be reached simultaneously, a bi-objective optimisation procedure was undertaken, producing a set of non-inferior solutions that weighted both objectives.


2020 ◽  
Vol 21 (3) ◽  
pp. 864 ◽  
Author(s):  
Yara Chamata ◽  
Kimberly A. Watson ◽  
Paula Jauregi

Several milk/whey derived peptides possess high in vitro angiotensin I-converting enzyme (ACE) inhibitory activity. However, in some cases, poor correlation between the in vitro ACE inhibitory activity and the in vivo antihypertensive activity has been observed. The aim of this study is to gain insight into the structure-activity relationship of peptide sequences present in whey/milk protein hydrolysates with high ACE inhibitory activity, which could lead to a better understanding and prediction of their in vivo antihypertensive activity. The potential interactions between peptides produced from whey proteins, previously reported as high ACE inhibitors such as IPP, LIVTQ, IIAE, LVYPFP, and human ACE were assessed using a molecular docking approach. The results show that peptides IIAE, LIVTQ, and LVYPFP formed strong H bonds with the amino acids Gln 259, His 331, and Thr 358 in the active site of the human ACE. Interestingly, the same residues were found to form strong hydrogen bonds with the ACE inhibitory drug Sampatrilat. Furthermore, peptides IIAE and LVYPFP interacted with the amino acid residues Gln 259 and His 331, respectively, also in common with other ACE-inhibitory drugs such as Captopril, Lisinopril and Elanapril. Additionally, IIAE interacted with the amino acid residue Asp 140 in common with Lisinopril, and LIVTQ interacted with Ala 332 in common with both Lisinopril and Elanapril. The peptides produced naturally from whey by enzymatic hydrolysis interacted with residues of the human ACE in common with potent ACE-inhibitory drugs which suggests that these natural peptides may be potent ACE inhibitors.


2019 ◽  
Vol 19 (4) ◽  
pp. 900
Author(s):  
Ketut Ratnayani ◽  
I Ketut Suter ◽  
Nyoman Semadi Antara ◽  
I Nengah Kencana Putra

During the germination process, seeds can release various types of peptides due to the degradation of storage proteins. Some of these peptides can have biological activity (bioactive peptides). The objective of this study was to determine the ACE inhibitory activity of germinated pigeon pea peptide extract at various germination times and to carry out the fractionation to the extract to get the most active peptide fraction. The results showed that the highest activity of peptide extract was found on the 4th-day germination of pigeon pea with an IC50 value of 63.46 μg/mL. The peptide extract was further fractionated by centrifugal ultrafiltration method and it was found that the peptide fraction < 3 kDa had the highest ACE inhibitory activity with an IC50 value of 57.79 μg/mL. The result of identification with the LCMS method to the fraction was able to detect 4 types of the peptide with a molecular weight of 230.304, 294.303, 441.436, and 570.591 Da. These results suggested that the peptide fraction of germinated pigeon pea has the potency as an ACE inhibitory nutraceutical.


Sign in / Sign up

Export Citation Format

Share Document