Numerical study on an application of subwavelength dielectric gratings for high-sensitivity plasmonic detection

2012 ◽  
Vol 51 (20) ◽  
pp. 4722 ◽  
Author(s):  
Woo Kyung Jung ◽  
Nak-Hyeon Kim ◽  
Kyung Min Byun
Antennas ◽  
2021 ◽  
Author(s):  
A. O. Kasyanov

This article is devoted to the analysis of numerical study results of printed frequency selective surfaces scattering characteristics. It has been shown that these frequency selective surfaces may be used as antenna radomes. Numerical results have been obtained by full-wave simulation of frequency-selective surfaces with dielectric covers. The numerical research results of the scattering characteristics of printed frequency selective surfaces as antenna radomes based on metal-dielectric gratings and thick perforated screens have been presented. A comprehensive numerical study of microwave frequency selective surfaces based on multi-element multilayer printed reflectarrays and thick perforated screens has been carried out. Constructive solutions for metal-dielectric structures in integral design, realizing the functions of frequency selective surfaces, have been found. These solutions are based on performed numerical studies. The problems of constructive implementation of multilayer planar spatially selective as frequency selective surfaces have been considered. These frequency selective surfaces are integrated into radiation systems of modern multi-element printed phased arrays. The problems connected with creation of such arrays have been also considered. The numerical simulation results for frequency selective surfaces based on metal gratings with dielectric covers have been obtained. These results can be used to select the most rational options for the topology of metal-dielectric gratings. Such solutions may be useful for design of multifunctional radomes in microwave antenna systems. Based on the obtained numerical data, the possibilities of using flat gratings as frequency selective surfaces in the composition of antenna radomes have been considered. The spatial frequency-selective structures proposed in this work are performed as multi-planar printed gratings. These gratings are designed to ensure electromagnetic compatibility of closely spaced radio electronic sets. These radio electronic sets operate in close frequency ranges. They contain antenna arrays. These arrays are placed under the antenna radomes.


Author(s):  
A.O. Kasyanov

This article is devoted to the analysis of numerical study results of printed angular filters scattering characteristics. It is shown these angular filters may be used as antenna radomes. Numerical results are obtained by full-wave simulation of frequency-selective surfaces with dielectric covers. The numerical research results of the scattering characteristics of a printed angular filter as antenna radome based on metal-dielectric gratings are presented. A comprehensive numerical study of microwave angular filters based on multi-element multilayer printed reflect arrays has been carried out. Constructive solutions for metal-dielectric structures in integral design, realizing the functions of angular filters, are found. These solutions are based on performed numerical studies. The problems of constructive implementation of multilayer planar spatially selective as angular filters are considered. These angular filters are integrated into the radiators and feeders of modern multi-element printed phased arrays. The problems connected with creation of such arrays are also considered. The numerical simulation results for angular filters based on metal gratings with dielectric covers are obtained. These results can be used to select the most rational options for the topology of metal-dielectric gratings. Such solutions may be useful for design of multifunctional radomes in microwave antenna systems. Based on the obtained numerical data, the possibilities of using flat gratings as angular filters in the composition of antenna radomes are considered. The spatial frequency-selective structures proposed in this work are performed as multi-planar printed gratings. These gratings are designed to ensure electromagnetic compatibility of closely spaced radio electronic sets. These radio electronic sets operate in close frequency ranges. They contain antenna arrays. These arrays are placed under the antenna radomes. At the same time, the installation of angular filters in the antenna radomes makes it possible to eliminate the appearance of unwanted grating lobes in the radiation patterns of sparse antenna arrays of promising radioengineering sets at microwaves.


2019 ◽  
Vol 123 (1266) ◽  
pp. 1170-1192 ◽  
Author(s):  
M. M. De ◽  
J. S. Mathur ◽  
S. Vengadesan

ABSTRACTOrnithopters and entomopters should be insensitive to the gusty environment during outdoor operations. Hence, it becomes imperative to understand their behaviour under the influence of gust for ensuring stable flight. In light of this, the present numerical study focused on understanding the aerodynamics of flapping wings with five different planform shapes under the influence of a spatiotemporally varying frontal gust. 3D, unsteady, laminar, and incompressible Navier-Stokes equations were solved using finite volume formulation. A canonical case of asymmetric 1 degree of freedom (DoF) flapping kinematics was considered. Horizontal and vertical force patterns in constant and gusty inflow conditions were numerically computed and compared. Findings were analyzed quantitatively by comparing the differences in the instantaneous force patterns, ordinal scoring approach, and phase space plots. Qualitative comparisons were made based on plots of vortex structures and surface pressure contours for constant and gusty inflow conditions for wings with different planform shapes. Spanwise Lagrangian Coherent Structures (LCS) of all the five wings were also compared. Studies revealed that the elliptical wing exhibited low sensitivity and inverse semi-elliptical wing exhibited high sensitivity to the gusty inflow. Rectangular, triangular and semi-elliptical shaped wings were moderately sensitive to the gusty inflow. This finding, within the limitations of the flapping kinematics and simulation conditions considered for the present study, supported the fact that many natural flyers like forest raptors, non-migratory passerines, pheasants, and partridges have adopted elliptical wing planform for efficient flight.


2020 ◽  
Vol 7 ◽  
pp. 21
Author(s):  
Robert Jean-Phillipp Meissner ◽  
Mathias Liewald ◽  
Daniel Ulrich ◽  
Hansgeorg Binz

Shaft-hub connections, which are joined by plastic deformation of at least one component (e.g. joining by lateral extrusion), can meet today's contradictory requirements for high power densities with low manufacturing costs. As opposed to classical manufacturing methods, the tight manufacturing tolerances of shafts and hubs are not required here since the shaft is formed in the hub during the process to generate a combined frictional and positive-locking connection. However, plastic deformation generally results in an uneven distribution of contact stress, which causes negative effects such as increased hub stress and deformation, as well as the reduced transmission capacity of the connection. To overcome this effect, an iterative design approach for plastically stressed shaft-hub connections was developed in Ulrich et al. (2019)[1], in which the contact-stress distribution is influenced by contouring of the hub contact surface. Nonetheless, one major challenge in this process is the high sensitivity of the stress distribution to contour changes, particularly in the edge area of the connection, meaning that a dependency on tight manufacturing tolerances is present here, too. Therefore, an investigation is conducted to determine the extent to which deviations in the manufacturing process of the components, in the tool quality and during joining by lateral extrusion influence the resulting contact stress. In order to achieve this goal, numerical investigations are carried out, and the effects on the resulting contact-stress distribution are analysed. Finally, recommendations for manufacturing accuracy and process limits are derived in order to ensure manufacturability and enable the transfer of technology to industrial applications involving shaft-hub connections joined by lateral extrusion.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 554 ◽  
Author(s):  
Aniello Riccio ◽  
Angela Russo ◽  
Andrea Sellitto ◽  
Cinzia Toscano ◽  
Davide Alfano ◽  
...  

Increasing the Mode I inter-laminar fracture toughness of composite laminates can contribute to slowing down delamination growth phenomena, which can be considered one of the most critical damage mechanisms in composite structures. Actually, the Mode I interlaminar fracture toughness (GIc) in fibre-reinforced composite materials has been found to considerably increase with the crack length when the fibre bridging phenomenon takes place. Hence, in this paper, the fibre bridging phenomenon has been considered as a natural toughening mechanism able to replace embedded metallic or composite reinforcements, currently used to increase tolerance to inter-laminar damage. An experimental/numerical study on the influence of delamination growth on the compressive behaviour of fibre-reinforced composites characterised by high sensitivity to the fibre bridging phenomenon has been performed. Coupons, made of material systems characterised by a variable toughness related to a high sensitivity to the fibre bridging phenomenon and containing artificial through-the-width delaminations, were subjected to a compressive mechanical test and compared to coupons made of standard material system with constant toughness. Out-of-plane displacements and strains were monitored during the compression test by means of strain gauges and digital image correlation to assess the influence of fibre bridging on delamination buckling, delamination growth and on the global buckling of the specimens, including buckling shape changes. Experimental data were combined with a numerical study, performed by means of a virtual crack closure technique based procedure, named SMart Time XB – Fibre Bridging (SMXB-FB), able to mimic the crack bridging effect on the toughness properties of the material system. The combination of numerical results and experimental data has allowed the deformations and the buckling shape changes to be correlated to the onset and evolution of damage and, hence, contributes to improving the knowledge on the interaction of the failure mechanisms in the investigated composite specimens.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.


Sign in / Sign up

Export Citation Format

Share Document