Terahertz Wave Avalanche Breakdown Transistor for high performance switching

2021 ◽  
Author(s):  
WANG WEIJUN ◽  
Liang-Hui Du ◽  
Jiang Li ◽  
PeiRen Tang ◽  
Zhao-Hui Zhai ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinchao Tong ◽  
Fei Suo ◽  
Tianning Zhang ◽  
Zhiming Huang ◽  
Junhao Chu ◽  
...  

AbstractHigh-performance uncooled millimetre and terahertz wave detectors are required as a building block for a wide range of applications. The state-of-the-art technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, and complicated architecture. Here, we report semiconductor surface plasmon enhanced high-performance broadband millimetre and terahertz wave detectors which are based on nanogroove InSb array epitaxially grown on GaAs substrate for room temperature operation. By making a nanogroove array in the grown InSb layer, strong millimetre and terahertz wave surface plasmon polaritons can be generated at the InSb–air interfaces, which results in significant improvement in detecting performance. A noise equivalent power (NEP) of 2.2 × 10−14 W Hz−1/2 or a detectivity (D*) of 2.7 × 1012 cm Hz1/2 W−1 at 1.75 mm (0.171 THz) is achieved at room temperature. By lowering the temperature to the thermoelectric cooling available 200 K, the corresponding NEP and D* of the nanogroove device can be improved to 3.8 × 10−15 W Hz−1/2 and 1.6 × 1013 cm Hz1/2 W−1, respectively. In addition, such a single device can perform broad spectral band detection from 0.9 mm (0.330 THz) to 9.4 mm (0.032 THz). Fast responses of 3.5 µs and 780 ns are achieved at room temperature and 200 K, respectively. Such high-performance millimetre and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. In addition, the integration of plasmonic semiconductor nanostructures paves a way for realizing high performance and multifunctional long-wavelength optoelectrical devices.


2015 ◽  
Vol 107 (7) ◽  
pp. 073903 ◽  
Author(s):  
Sheng Yin ◽  
Jianfei Zhu ◽  
Wendao Xu ◽  
Wei Jiang ◽  
Jun Yuan ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Miaoqing Wei ◽  
Dainan Zhang ◽  
Lei Zhang ◽  
Lichuan Jin ◽  
Huaiwu Zhang

Abstract In this paper, we have reported a multifunctional device from graphene/TiO2/p-Si heterojunction, followed by its systematical analysis of optical response in a device under ultraviolet–visible-infrared band and transmission changes of terahertz waves in the 0.3–1.0 THz band under different bias voltages. It is found that photodetector in the “back-to-back” p-n-p energy band structure has a seriously unbalanced distribution of photogenerated carriers in the vertical direction when light is irradiated from the graphene side. So this ensures a higher optical gain of the device in the form of up to 3.6 A/W responsivities and 4 × 1013 Jones detectability under 750 nm laser irradiation. Besides, the addition of TiO2 layer in this terahertz modulator continuously widens the carrier depletion region under negative bias, thereby realizing modulation of the terahertz wave, making the modulation depth up to 23% under − 15 V bias. However, almost no change is observed in the transmission of terahertz wave when a positive bias is applied. A similar of an electronic semiconductor diode is observed that only allows the passage of terahertz wave for negative bias and blocks the positive ones. Graphic Abstract


2021 ◽  
Author(s):  
Lichuan Jin ◽  
Miaoqing Wei ◽  
Dainan Zhang ◽  
Lei Zhang ◽  
Huaiwu Zhang

Abstract In this paper, we have prepared a multifunctional device based on graphene/TiO2/p-Si heterojunction and systematically studied the optical response of the device in the ultraviolet-visible-infrared band and the transmission changes of terahertz waves in the 0.3-1.0 THz band under different bias voltages. As a photodetector, the “back-to-back” p-n-p energy band structure makes the device have a serious unbalanced distribution of photogenerated carriers in the vertical direction when light is incident from the graphene side, which ensures a higher optical gain of the device, so as to achieve a responsivity up to 3.6 A/W and a detectability of 4×1013 Jones under 750 nm laser irradiation. As a terahertz modulator, the addition of the TiO2 layer allows the device to continuously widen the carrier depletion region under negative bias, thereby realizing modulation of the terahertz wave, making the modulation depth up to 23% under − 15 V bias. However, there is almost no change in the transmission of the terahertz wave when positive bias is applied. An analogue of an electronic semiconductor diode effect is realized that allows passage of the terahertz wave only for negative bias and blocks the terahertz wave while positively biased.


2011 ◽  
Vol 679-680 ◽  
pp. 662-665 ◽  
Author(s):  
Akio Takatsuka ◽  
Yasunori Tanaka ◽  
Koji Yano ◽  
Tsutomu Yatsuo ◽  
Kazuo Arai

In this work, we succeeded in developing high performance normally-off SiC buried gate static induction transistors (SiC-BGSITs). To achieve the normally-off characteristics, design parameters around the channel region were optimized and process conditions were improved to realize these parameters. The off-state characteristic of the SiC-BGSIT showed an avalanche breakdown voltage of VBR=980 V at a gate voltage of VG=0 V. Furthermore, the leakage current at VD=950 V is lower than 0.5 μA. These results indicate that the BGSIT has a good normally-off characteristic. At VG=2.5 V, an on-resistance of 28.0 mΩ corresponding to the specific on-resistance of 1.89 mΩ•cm2 was obtained and the current rating was calculated as 33 A at a power density of 200 W/cm2 in the on-state characteristic.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).


Sign in / Sign up

Export Citation Format

Share Document