scholarly journals Role of T cells during the cerebral infection with Trypanosoma brucei

2021 ◽  
Vol 15 (9) ◽  
pp. e0009764
Author(s):  
Gabriela C. Olivera ◽  
Leonie Vetter ◽  
Chiara Tesoriero ◽  
Federico Del Gallo ◽  
Gustav Hedberg ◽  
...  

The infection by Trypanosoma brucei brucei (T.b.b.), a protozoan parasite, is characterized by an early-systemic stage followed by a late stage in which parasites invade the brain parenchyma in a T cell-dependent manner. Here we found that early after infection effector-memory T cells were predominant among brain T cells, whereas, during the encephalitic stage T cells acquired a tissue resident memory phenotype (TRM) and expressed PD1. Both CD4 and CD8 T cells were independently redundant for the penetration of T.b.b. and other leukocytes into the brain parenchyma. The role of lymphoid cells during the T.b.b. infection was studied by comparing T- and B-cell deficient rag1-/- and WT mice. Early after infection, parasites located in circumventricular organs, brain structures with increased vascular permeability, particularly in the median eminence (ME), paced closed to the sleep-wake regulatory arcuate nucleus of the hypothalamus (Arc). Whereas parasite levels in the ME were higher in rag1-/- than in WT mice, leukocytes were instead reduced. Rag1-/- infected mice showed increased levels of meca32 mRNA coding for a blood /hypothalamus endothelial molecule absent in the blood-brain-barrier (BBB). Both immune and metabolic transcripts were elevated in the ME/Arc of WT and rag1-/- mice early after infection, except for ifng mRNA, which levels were only increased in WT mice. Finally, using a non-invasive sleep-wake cycle assessment method we proposed a putative role of lymphocytes in mediating sleep alterations during the infection with T.b.b. Thus, the majority of T cells in the brain during the early stage of T.b.b. infection expressed an effector-memory phenotype while TRM cells developed in the late stage of infection. T cells and parasites invade the ME/Arc altering the metabolic and inflammatory responses during the early stage of infection and modulating sleep disturbances.

2015 ◽  
Vol 22 (9) ◽  
pp. 992-1003 ◽  
Author(s):  
A. D. White ◽  
C. Sarfas ◽  
K. West ◽  
L. S. Sibley ◽  
A. S. Wareham ◽  
...  

ABSTRACTNine million cases of tuberculosis (TB) were reported in 2013, with a further 1.5 million deaths attributed to the disease. When delivered as an intradermal (i.d.) injection, theMycobacterium bovisBCG vaccine provides limited protection, whereas aerosol delivery has been shown to enhance efficacy in experimental models. In this study, we used the rhesus macaque model to characterize the mucosal and systemic immune response induced by aerosol-delivered BCG vaccine. Aerosol delivery of BCG induced both Th1 and Th17 cytokine responses. Polyfunctional CD4 T cells were detected in bronchoalveolar lavage (BAL) fluid and peripheral blood mononuclear cells (PBMCs) 8 weeks following vaccination in a dose-dependent manner. A similar trend was seen in peripheral gamma interferon (IFN-γ) spot-forming units measured by enzyme-linked immunosorbent spot (ELISpot) assay and serum anti-purified protein derivative (PPD) IgG levels. CD8 T cells predominantly expressed cytokines individually, with pronounced tumor necrosis factor alpha (TNF-α) production by BAL fluid cells. T-cell memory phenotype analysis revealed that CD4 and CD8 populations isolated from BAL fluid samples were polarized toward an effector memory phenotype, whereas the frequencies of peripheral central memory T cells increased significantly and remained elevated following aerosol vaccination. Expression patterns of the α4β1 integrin lung homing markers remained consistently high on CD4 and CD8 T cells isolated from BAL fluid and varied on peripheral T cells. This characterization of aerosol BCG vaccination highlights features of the resulting mycobacterium-specific immune response that may contribute to the enhanced protection previously reported in aerosol BCG vaccination studies and will inform future studies involving vaccines delivered to the mucosal surfaces of the lung.


2011 ◽  
Vol 79 (11) ◽  
pp. 4503-4510 ◽  
Author(s):  
Takashi Dejima ◽  
Kensuke Shibata ◽  
Hisakata Yamada ◽  
Hiromitsu Hara ◽  
Yoichiro Iwakura ◽  
...  

ABSTRACTInterleukin-17A (IL-17A)-producing γδ T cells differentiate in the fetal thymus and reside in the peripheral tissues, such as the lungs of naïve adult mice. We show here that naturally occurring γδ T cells play a protective role in the lung at a very early stage after systemic infection withCandida albicans.Selective depletion of neutrophils byin vivoadministration of anti-Ly6G monoclonal antibody (MAb) impaired fungal clearance more prominently in the lung than in the kidney 24 h after intravenous infection withC. albicans.Rapid and transient production of IL-23 was detected in the lung at 12 h, preceding IL-17A production and the influx of neutrophils, which reached a peak at 24 h after infection. IL-17A knockout (KO) mice showed reduced infiltration of neutrophils concurrently with impaired fungal clearance in the lung after infection. The major source of IL-17A was the γδ T cell population in the lung, and Cδ KO mice showed little IL-17A production and reduced neutrophil infiltration after infection. Early IL-23 production in a TLR2/MyD88-dependent manner and IL-23-triggered tyrosine kinase 2 (Tyk2) signaling were essential for IL-17A production by γδ T cells. Thus, our study demonstrated a novel role of naturally occurring IL-17A-producing γδ T cells in the first line of host defense againstC. albicansinfection.


2021 ◽  
Vol 8 (4) ◽  
pp. 73-76
Author(s):  
Katherine Figarella

Trypanosoma brucei is one of the protozoa parasites that can enter the brain and cause injury associated with toxic effects of parasite-derived molecules or with immune responses against infection. Other protozoa parasites with brain tropism include Toxoplasma, Plasmodium, Amoeba, and, eventually, other Trypano-somatids such as T. cruzi and Leishmania. Together, these parasites affect billions of people worldwide and are responsible for more than 500.000 deaths annually. Factors determining brain tropism, mechanisms of in-vasion as well as processes ongoing inside the brain are not well understood. But, they depend on the par-asite involved. The pathogenesis caused by T. brucei initiates locally in the area of parasite inoculation, soon trypanosomes rich the blood, and the disease enters in the so-called early stage. The pathomecha-nisms in this phase have been described, even mole-cules used to combat the disease are effective during this period. Later, the disease evolves towards a late-stage, characterized by the presence of parasites in the central nervous system (CNS), the so-called meningo-encephalitic stage. This phase of the disease has not been sufficiently examined and remains a matter of investigation. Here, I stress the importance of delve into the study of the neuropathogenesis caused by T. brucei, which will enable the identification of path-ways that may be targeted to overcome parasites that reached the CNS. Finally, I highlight the impact that the application of tools developed in the last years in the field of neuroscience will have on the study of neglect-ed tropical diseases.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Songmi Lee ◽  
Jacob Hudobenko ◽  
Bhanu Priya Ganesh ◽  
Louise McCullough ◽  
Anjali Chauhan

Introduction: Activated T lymphocytes are present in the brain and play a detrimental role in aging and potentiate inflammation after ischemic injury. Previous studies have shown that T lymphocytes (T cells) synthesize and secrete catecholamines that modulate their activation. Tyrosine hydroxylase (TH), is a rate-limiting enzyme in catecholamine synthesis. Little is known about the role and contribution of TH synthesis specifically in T lymphocytes in aging and ischemic stroke injury. We hypothesized that aging will lead to increase TH + T cells in the brain that will have an activated phenotype and contribute to the progression of ischemic injury. Methods: Young (8-12 weeks) and old (22-24 months) C57BL/6 male mice were used. Spleen, bone marrow and brain were harvested and flow cytometry was used to immunophenotype the TH + T cells. Expression of TH on sorted CD4 + and CD8 + T cells was assessed by a real-time polymerase chain reaction. Splenic lymphocytes were stimulated with PMA/ionomycin and different T cell subsets were analyzed. The CD4 + T cells were purified from young and old mouse spleens and ex vivo stimulated to measure cytokine production. Finally, young and old mice underwent 60 minutes of middle cerebral artery occlusion (MCAo) and were euthanized 4 days later to determine the role of TH + T lymphocytes in stroke injury. Results: The percentage and MFI of TH was increased on CD4 + T cells with aging however, no change in TH percentage or MFI on CD8 + T cells was observed. TH RNA was increased in CD4 + T cells derived from old animals. The TH + CD4 + T cells were activated and had an effector memory phenotype in aging. On acute stimulation, old TH + CD4 + T cells increased the production of INF-γ, IL-4, and Il-17. After MCAo the percentage TH + CD4 + T cells increased in both young and old mice in the brain. The MFI IL-4/INF-γ ratio was higher in the young MCAo versus old MCAo reflecting a Th2 related response. Conclusion: TH + CD4 + T cells increase with age. These cells have an activated and effector memory phenotype and secrete inflammatory cytokines on acute stimulation. After MCAo, TH + CD4 + T cells demonstrated Th2 related protective responses in only in young mice.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 848-848 ◽  
Author(s):  
Takeru Asano ◽  
Yuriko Kishi ◽  
Yusuke Meguri ◽  
Takanori Yoshioka ◽  
Miki Iwamoto ◽  
...  

Abstract CD4+ Foxp3+ regulatory T cells (Treg) play a central role in the maintenance of immune tolerance. In the setting of allogeneic hematopoietic stem cell transplantation (HSCT), Treg recovery after transplant has been reported as a critical factor to suppress the onset of graft-versus-host disease (GVHD) and stabilize the immune condition. We previously demonstrated that low-dose IL-2 administration preferentially increased Treg in patients with active chronic GVHD and resulted in clinical improvement of the symptoms (NEJM 2011). In the clinical trial, IL-2 induced selective and rapid proliferation of Treg in the first week of therapy but proliferation subsequently returned to baseline levels despite continued daily administration of IL-2 (Sci Trans Med 2013). By detailed analysis of lymphocytes from patients receiving IL-2 therapy, we found that inhibitory molecule Programmed death-1 (PD-1) expression rapidly increased selectively on Treg 2 weeks after starting IL-2, suggesting PD-1 may work to suppress the excessive proliferation of Treg and stabilize homeostasis of this subset during IL-2 therapy (ASH 2014). However, the cellular mechanisms of inhibition of Treg proliferation to maintain Treg homeostasis has not been characterized. To tackle the issue, we here studied the impact and role of PD-1 expression on Treg by using murine IL-2 therapy model. B6 mice were administrated 5x103 IU IL-2 once a day for 14 days and CD4+CD25+Foxp3+ Treg were analyzed comparing with CD4+CD25-Foxp3- conventional CD4 T cells (Tcon) and CD8+ T cells. These subsets were further divided into subpopulations by the expression of CD44 and CD62L. The expressions of pSTAT5, Ki-67, Bcl-2, Fas, PD-1, CTLA-4, LAG3 and TIM-3 in each subset were also examined. As in human, low-dose IL-2 rapidly enhanced PD-1 on Treg, but not other inhibitory molecules including CTLA-4, LAG-3 and TIM-3. Low-dose IL-2 did not affect the expression level of any inhibitory molecules on Tcon and CD8T cells. To clarify the role of PD-1 expression on Treg, we compared PD-1-/- B6 with wild-type B6. PD-1-/- mice were administrated 5x103 IU IL-2 once a day for 28 days. In the first 7 days, IL-2 induced significantly higher levels of pSTAT5 expression in Treg in PD-1-/- cohort than WT cohort (MFI of pSTAT5; mean 4.8 vs 4.0, p<0.01). This resulted in the stronger proliferation and expansion of Treg in PD-1-/- cohort in the first week of IL-2. However, after 7 days, IL-2 expanded PD-1-/- Treg rapidly decreased and returned to baseline level, while IL-2 treated wild type Treg maintained to increase during the 4 weeks. We confirmed this phenomenon by another experimental system using the combination of low-dose IL-2 and anti-PD-1 antibody, and again found that the initial strong proliferation by IL-2 was just temporally and followed by the collapse of Treg homeostasis. To reveal the mechanism of Treg decrease in the absence of PD-1 signal, we assessed Annexin-V+ cells to detect apoptotic cells at day15. IL-2 treated PD-1-/- Treg showed significantly higher level of Annexin-V+ cells than WT Treg (mean 10.5% vs 4.6%, p<0.01). IL-2 treated WT Treg were predominantly CD44high CD62Lhigh central memory phenotype and this phenotype showed increase of PD-1 expression (%PD-1+ cells; mean 44.6% vs 31.7%, vs control, p<0.0001), in contrast, IL-2 treated PD-1-/- Treg showed the accumulation of CD44high CD62Llow effector memory phenotype, which showed high positivity of Annexin-V (mean 15.4% vs 6.4%, p<0.01). These data suggested that PD-1 modulates subset-balance of Treg and inhibits activation-induced-cell death (AICD). We also examined the expression of surface death receptor Fas and intracellular anti-apoptic protein Bcl-2 at day15 to investigate the pathway of apoptosis by lacking of PD-1 signal. IL-2 treated PD-1-/- Treg showed higher increase of Fas expression (mean MFI, 1.5 vs 1.1, p<0.05) and decrease of Bcl-2 expression (mean MFI, 2.6 vs 3.4, p<0.05) than IL-2 treated WT Treg after IL-2 therapy, suggesting that Fas and Bcl-2 might participate in the regulation of apoptosis. In conclusion, our findings indicate that the PD-1 pathway can limit over activation and proliferation of Treg and prevent apoptosis via Fas and Bcl-2 activity during IL-2 therapy. Our finding may implicate the development of Treg depletion therapy by blocking PD-1 signaling. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (11) ◽  
Author(s):  
Yasuhiro Suzuki

The immune system operates the protection against infections by selecting efficient pathways depending on the pathogen. Toxoplasma gondii, an obligate intracellular protozoan parasite, has two lifecycle stages, tachyzoite and cyst, in intermediate hosts including humans. Tachyzoite is the acute stage form that quickly proliferates within host cells. Cyst is the chronic stage form that can slowly grow into more than 100 mm in diameter by containing hundreds to thousands of bradyzoites. Our studies on the IFN-g-mediated protective immunity against cerebral tachyzoite growth revealed that IFN-g production by brain-resident cells is not only required for upregulation of the innate protective immunity to limit cerebral tachyzoite proliferation during the early stage of the tachyzoite growth but also crucial for recruiting immune T cells from the periphery and activation of the recruited T cells to ultimately prevent the tachyzoite growth. Since IFN-g is crucial for the protective immunity against various intracellular microorganisms in the brain, it is possible that IFN-gproduced by brain-resident cells plays a key first line defense role by orchestrating both the innate and T cell-mediated protective immunity to control not only T. gondii but also the other intracellular pathogens. Our studies on the protective immunity against T. gondii cysts uncovered the capability of cytotoxic T cells to penetrate into the target in a perforin-dependent manner for its elimination. After penetrating into the target, the cytotoxic T cells secrete granzyme B, which associates with an accumulation of phagocytes to eliminate the parasite. Since the presence of tumor-infiltrating CD8+ T cells in solid cancers is an indicator of positive prognosis of cancer patients, the perforin-mediated penetration of CD8+ T cells and an accumulation of phagocytes could function as a powerful protective mechanism against not only T. gondiicysts but also targets of large mass in general such as solid cancers.


2019 ◽  
Vol 101 (2) ◽  
pp. 377-391 ◽  
Author(s):  
Aubrey Converse ◽  
Peter Thomas

Abstract Androgens mediate a number of processes in mammalian and teleost ovaries in a follicle-stage dependent manner, including follicle growth, survival, and apoptosis. We recently reported that the membrane androgen receptor ZIP9 mediates apoptosis in Atlantic croaker granulosa/theca (G/T) cells from mature ovarian follicles, but the effects of androgens on early stage G/T cells in this model remains unknown. Here we show that testosterone mediates pro- and anti-apoptotic responses in a follicle stage-dependent manner in croaker ovarian follicle cells. Testosterone treatment decreased the incidence of apoptosis in G/T cells from early stage follicles (diameter <300 μm) but increased apoptosis in G/T cells from late stage follicles (diameter >400 μm). Small interfering RNA targeting ZIP9, but not the nuclear androgen receptor, blocked the anti-apoptotic response, indicating ZIP9 mediates anti-apoptotic in addition to pro-apoptotic responses. Testosterone treatment of early stage G/T cells resulted in opposite signaling outcomes from those previously characterized for the ZIP9-mediated apoptotic response including decreased cAMP and intracellular free zinc levels, and downregulation of pro-apoptotic member mRNA expression. While ZIP9-mediated apoptosis involves activation of a stimulatory G protein (Gs), activators of Gs signaling antagonized the anti-apoptotic response. Proximity ligation and G protein activation assays indicated that in G/T cells from early stage follicles ZIP9 is in close proximity and activates an inhibitory G protein, while in G/T cells from late stage follicles ZIP9 is in close proximity and activates Gs. This study demonstrates that ZIP9 mediates opposite survival responses of croaker G/T cells by activating different G proteins in a follicle stage-dependent manner.


2021 ◽  
Author(s):  
Silvia Tiberti ◽  
Carlotta Catozzi ◽  
Caterina Scirgolea ◽  
Ottavio Croci ◽  
Mattia Ballerini ◽  
...  

Tumor contexture has emerged as a major determinant to establish prognosis and guide novel therapies and tumor infiltrating CD8+ T cells have been associated with a better prognosis in several solid tumors, including early-stage colorectal cancer (CRC). However, the tumor immune infiltrate is highly heterogeneous and understanding how the interplay between different immune cell compartments impacts on the clinical outcome is still in its infancy. Here, we describe in a prospective cohort a novel CD8+ T effector memory population, which is characterized by high levels of Granzyme K (GZMKhigh CD8+ TEM) and correlated with CD15high tumor infiltrating neutrophils. We provide both in vitro and in vivo evidence of the role of stromal cell-derived factor 1 (CXCL12/SDF-1) in driving functional changes on neutrophils at the tumor site, promoting their retention and increasing crosstalk with CD8+ T cells. Mechanistically, as a consequence of the interaction with neutrophils, CD8+ T cells are skewed towards a CD8+ TEM phenotype, producing high levels of GZMK, which in turn decreased E-cadherin pathway. The correlation of GZMKhigh CD8+ TEM and neutrophils with both tumor progression in mice and early relapse in CRC patients demonstrate the role of GZMKhigh CD8+ TEM in promoting malignancy. Indeed, a gene signature defining GZMKhigh CD8+ TEM was associated with worse prognosis on a larger independent cohort of CRC patients and a similar analysis was extended to lung cancer (TCGA). Overall, our results highlight the emergence of GZMKhigh CD8+ TEM in early-stage CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics.


Sign in / Sign up

Export Citation Format

Share Document