scholarly journals Treatment of Rats with a Self-Selected Hyperlipidic Diet, Increases the Lipid Content of the Main Adipose Tissue Sites in a Proportion Similar to That of the Lipids in the Rest of Organs and Tissues

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e90995 ◽  
Author(s):  
María del Mar Romero ◽  
Stéphanie Roy ◽  
Karl Pouillot ◽  
Marisol Feito ◽  
Montserrat Esteve ◽  
...  
2018 ◽  
Vol 48 (1) ◽  
pp. 397-408 ◽  
Author(s):  
Ingrid  Felicidade ◽  
Daniele Sartori ◽  
Susan L.M. Coort ◽  
Simone Cristine Semprebon ◽  
Andressa Megumi Niwa ◽  
...  

Background/Aims: Compared with non-obese individuals, obese individuals commonly store more vitamin D in adipose tissue. VDR expression in adipose tissue can influence adipogenesis and is therefore a target pathway deserving further study. This study aims to assess the role of 1,25(OH)2D3 in human preadipocyte proliferation and differentiation. Methods: RTCA, MTT, and trypan blue assays were used to assess the effects of 1,25(OH)2D3 on the viability, proliferation, and adipogenic differentiation of SGBS cells. Cell cycle and apoptosis analyses were performed with flow cytometry, triglycerides were quantified, and RT-qPCR was used to assess gene expression. Results: We confirmed that the SGBS cell model is suitable for studying adipogenesis and demonstrated that the differentiation protocol induces cell maturation, thereby increasing the lipid content of cells independently of treatment. 1,25(OH)2D3 treatment had different effects according to the cell stage, indicating different modes of action driving proliferation and differentiation. In preadipocytes, 1,25(OH)2D3 induced G1 growth arrest at both tested concentrations without altering CDKN1A gene expression. Treatment with 100 nM 1,25(OH)2D3 also decreased MTT absorbance and the lipid concentration. Moreover, increased normalized cell index values and decreased metabolic activity were not induced by proliferation or apoptosis. Exposure to 100 nM 1,25(OH)2D3 induced VDR, CEBPA, and CEBPB expression, even in the preadipocyte stage. During adipogenesis, 1,25(OH)2D3 had limited effects on processes such as VDR and PPARG gene expression, but it upregulated CEBPA expression. Conclusions: We demonstrated for the first time that 1,25(OH)2D3 induces changes in preadipocytes, including VDR expression and growth arrest, and increases the lipid content in adipocytes treated for 16 days. Preadipocytes are important cells in adipose tissue homeostasis, and understanding the role of 1,25(OH)2D3 in adipogenesis is a crucial step in ensuring adequate vitamin D supplementation, especially for obese individuals.


2014 ◽  
Vol 55 (3) ◽  
pp. 516-523 ◽  
Author(s):  
Willeke de Haan ◽  
Alpana Bhattacharjee ◽  
Piers Ruddle ◽  
Martin H. Kang ◽  
Michael R. Hayden

2020 ◽  
Author(s):  
Oana P. Zaharia ◽  
Klaus Strassburger ◽  
Birgit Knebel ◽  
Yuliya Kupriyanova ◽  
Yanislava Karusheva ◽  
...  

<a><b>Objective</b></a>: The rs738409(G) single-nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 (<i>PNPLA3</i>) gene associates with increased risk and progression of nonalcoholic fatty liver disease (NAFLD). As the recently-described severe insulin-resistant diabetes (SIRD) cluster specifically relates to NAFLD, this study examined whether this SNP differently associates with hepatic lipid content (HCL) and insulin sensitivity in recent-onset diabetes mellitus. <p><b>Research Design and Methods</b>: A total of 917 participants of the German Diabetes Study underwent genotyping, hyperinsulinemic-euglycemic clamps with stable isotopic tracer dilution and magnetic resonance spectroscopy. </p> <p><b>Results:</b> The G allele associated positively with HCL (β=0.36, p<0.01), independent of age, sex and BMI across the whole cohort, but not in the individual clusters. SIRD exhibited lowest whole-body insulin sensitivity compared to severe insulin-deficient (SIDD), moderate obesity-related (MOD), moderate age-related (MARD) and severe autoimmune diabetes clusters (SAID; all p<0.001). Interestingly, SIRD presented with higher prevalence of the rs738409(G) SNP compared to other clusters and the glucose-tolerant control group (p<0.05). HCL was higher in SIRD [13.6 (5.8;19.1)%] compared to MOD [6.4 (2.1;12.4)%, p<0.05], MARD [3.0 (1.0;7.9)%, p<0.001], SAID [0.4 (0.0;1.5)%, p<0.001] and the glucose tolerant group [0.9 (0.4;4.9)%, p<0.001]. Although the <i>PNPLA3</i> polymorphism did not directly associate with whole-body insulin sensitivity in SIRD, the G allele carriers had higher circulating free fatty acid concentrations and greater adipose-tissue insulin resistance compared to non-carriers (both p<0.001).</p> <b>Conclusions:</b> Members of the severe insulin resistant diabetes cluster are more frequently carriers of the rs738409(G) variant. The SNP-associated adipose-tissue insulin resistance and excessive lipolysis may contribute to their NAFLD.


2021 ◽  
pp. 1-7
Author(s):  
Benjamin W. Tero ◽  
Bethany Fortier ◽  
Ashley N. Soucy ◽  
Ginger Paquette ◽  
Lucy Liaw

Quantification of adipocyte size and number is routinely performed for white adipose tissues using existing image analysis software. However, thermogenic adipose tissue has multilocular adipocytes, making it difficult to distinguish adipocyte cell borders and to analyze lipid proportion using existing methods. We developed a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue. This method, using FIJI analysis of hematoxylin/eosin stained sections, was highly objective and highly reproducible, with ∼99% inter-rater reliability. The method was compared to direct lipid staining of adipose tissue, with comparable results. We used our method to analyze perivascular adipose tissue (PVAT) from C57BL/6 mice on a normal chow diet, compared to calorie restriction or a high fat diet, where lipid storage phenotypes are known. Results indicate that lipid content can be estimated within mouse PVAT in a quantitative and reproducible manner, and shows correlation with previously studied molecular and physiological measures.


1974 ◽  
Vol 142 (3) ◽  
pp. 465-475 ◽  
Author(s):  
Nicole Bégin-Heick ◽  
Michel Bourassa ◽  
H. M. C. Heick

1. Chronic oxytetracycline treatment was found to improve the insulin resistance of the obese–hyperglycaemic mouse. 2. The improved response to insulin was accompanied by decreased concentrations of circulating insulin and glucose, by a decrease in the lipid content of the liver and by an increase in the insulin-receptor sites of the liver and adipose tissue. 3. The increase in insulin-receptor sites preceded the fall in blood glucose. 4. Comparable studies done on food-restricted animals indicated that although chronic food restriction corrected the hyperinsulinaemia it did not restore the insulin-receptor sites or the hyperglycaemia.


1983 ◽  
Vol 244 (3) ◽  
pp. R347-R355 ◽  
Author(s):  
B. E. Levin ◽  
J. Triscari ◽  
A. C. Sullivan

Sprague-Dawley rats developed diet-induced obesity (DIO) after 3 mo on a high-fat, high-sucrose diet (DIO diet), with associated increases in total body and interscapular brown adipose tissue (IBAT) lipid content. After 7 days on the DIO diet, rats had increased levels of tyrosine hydroxylase (TH; 34%), norepinephrine (NE; 34%), and NE turnover (94%; estimated by alpha-methyl-p-tyrosine inhibition of TH) in their IBAT compared with chow-fed controls. After 3 mo on the DIO diet, NE levels and/or turnover were reduced by 27–50% in aortas, hearts, and pancreata in obese rats. While IBAT NE turnover was normal, TH inhibition failed to increase the lipid content of IBAT in obese rats as it did in controls, suggesting a postsynaptic defect in basal NE-stimulated lipolysis in this thermogenically active tissue. When obese rats were switched from the DIO diet to rat chow for 3 days, NE levels remained depressed in their hearts (25%) and aortas (14%) but were increased by 36–45% in IBAT, pancreata, and white adipose tissue. NE turnover rates and/or constants were increased by 37–110% in hearts, aortas, pancreata, and IBAT of these obese rats while there were increased IBAT TH (20%) and dopamine-beta-hydroxylase (87%) activities compared with chow-fed controls. Therefore, sympathetic activity varied markedly as a function of both dietary composition and relative body weight during the development of DIO.


2001 ◽  
Vol 79 (8) ◽  
pp. 1512-1517 ◽  
Author(s):  
Marc R.L Cattet ◽  
Paul D Watts ◽  
Jeong S Sim

The relationship between the water content and lipid content of adipose tissue was compared between 25 polar bears (Ursus maritimus) and 25 black bears (Ursus americanus) to determine if it was affected by species differences in the fatty-acid composition of adipose tissue. The adipose tissue of polar bears had a lower water content and a higher proportion of long-chain fatty acids than did the adipose tissue of black bears, when compared at equal lipid content. The relationship between the body water and lipid contents was also compared among 11 polar bears, 18 black bears, and 6 brown bears (Ursus arctos) to determine if this relationship could be affected by species differences in the relationship between the water and lipid contents of adipose tissue. The body-water content in marine (polar) bears was less than that in terrestrial (black and brown) bears, and the differences in body-water content between the two groups became more apparent as the body-lipid content increased. These results suggest that the fatty-acid composition of adipose tissue can affect the body-water content, especially in fat bears. These findings have implications for the use of isotope-dilution models to predict body composition in bears.


2010 ◽  
Vol 88 (12) ◽  
pp. 1157-1165 ◽  
Author(s):  
Samyra L. Buzelle ◽  
Maísa P. Santos ◽  
Amanda M. Baviera ◽  
Carbene F. Lopes ◽  
Maria A.R. Garófalo ◽  
...  

The amount of triacylglycerol (TAG) that accumulates in adipose tissue depends on 2 opposing processes: lipogenesis and lipolysis. We have previously shown that the weight and lipid content of epididymal (EPI) adipose tissue increases in growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The aim of this work was to study the pathways involved in lipogenesis and lipolysis, which ultimately regulate lipid accumulation in the tissue. De novo fatty acid synthesis was evaluated in vivo and was similar for rats fed an LPHC diet or a control diet; however, the LPHC-fed rats had decreased lipoprotein lipase activity in the EPI adipose tissue, which suggests that there was a decreased uptake of fatty acids from the circulating lipoproteins. The LPHC diet did not affect synthesis of glycerol-3-phosphate (G3P) via glycolysis or glyceroneogenesis. Glycerokinase activity — i.e., the phosphorylation of glycerol from the hydrolysis of endogenous TAG to form G3P — was also not affected in LPHC-fed rats. In contrast, adipocytes from LPHC animals had a reduced lipolytic response when stimulated by norepinephrine, even though the basal adipocyte lipolytic rate was similar for both of the groups. Thus, the results suggest that the reduction of lipolytic activity stimulated by norepinephrine seems essential for the TAG increase observed in the EPI adipose tissue of LPHC animals, probably by impairment of the process of activation of lipolysis by norepinephrine.


Sign in / Sign up

Export Citation Format

Share Document