scholarly journals Assessment of transcriptional importance of cell line-specific features based on GTRD and FANTOM5 data

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243332
Author(s):  
Ruslan N. Sharipov ◽  
Yury V. Kondrakhin ◽  
Anna S. Ryabova ◽  
Ivan S. Yevshin ◽  
Fedor A. Kolpakov

Creating a complete picture of the regulation of transcription seems to be an urgent task of modern biology. Regulation of transcription is a complex process carried out by transcription factors (TFs) and auxiliary proteins. Over the past decade, ChIP-Seq has become the most common experimental technology studying genome-wide interactions between TFs and DNA. We assessed the transcriptional significance of cell line-specific features using regression analysis of ChIP-Seq datasets from the GTRD database and transcriptional start site (TSS) activities from the FANTOM5 expression atlas. For this purpose, we initially generated a large number of features that were defined as the presence or absence of TFs in different promoter regions around TSSs. Using feature selection and regression analysis, we identified sets of the most important TFs that affect expression activity of TSSs in human cell lines such as HepG2, K562 and HEK293. We demonstrated that some TFs can be classified as repressors and activators depending on their location relative to TSS.

2021 ◽  
Vol 22 (11) ◽  
pp. 5798
Author(s):  
Shoko Tokumoto ◽  
Yugo Miyata ◽  
Ruslan Deviatiiarov ◽  
Takahiro G. Yamada ◽  
Yusuke Hiki ◽  
...  

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


Author(s):  
Zhen Tian ◽  
Xiaodong Qin ◽  
Hui Wang ◽  
Ji Li ◽  
Jinfeng Chen

AbstractThe CONSTANS-like (COL) gene family is one of the plant-specific transcription factor families that play important roles in plant growth and development. However, the knowledge of COLs related in cucumber is limited, and their biological functions, especially in the photoperiod-dependent flowering process, are still unclear. In this study, twelve CsaCOL genes were identified in the cucumber genome. Phylogenetic and conserved motif analyses provided insights into the evolutionary relationship between the CsaCOLs. Further, the comparative genome analysis revealed that COL genes are conserved in different plant species, especially collinearity gene pairs related to CsaCOL5. Ten kinds of cis-acting elements were vividly detected in CsaCOLs promoter regions, including five light-responsive elements, which echo the diurnal rhythm expression patterns of seven CsaCOL genes under SD and LD photoperiod regimes. Combined with the expression data of developmental stage, three CsaCOL genes are involved in the flowering network and play pivotal roles for the floral induction process. Our results provide useful information for further elucidating the structural characteristics, expression patterns, and biological functions of COL family genes in many plants


1991 ◽  
Vol 11 (6) ◽  
pp. 3052-3059
Author(s):  
C M Pleiman ◽  
S D Gimpel ◽  
L S Park ◽  
H Harada ◽  
T Taniguchi ◽  
...  

To better understand the regulation of interleukin-7 receptor (IL-7R) expression, we have pursued a detailed analysis of the structure of the murine and human IL-7R genes. The genes consist of eight exons, the sizes of which are conserved in mouse and human cells, spread out over 24 kbp (murine) and 19 kbp (human). A differential splicing event results in an mRNA encoding a secreted form of the human IL-7R gene. Primer extension and S1 nuclease analysis show a single transcriptional start site for the murine IL-7R gene. The 5'-flanking region of the murine IL-7R gene contains TATA- and CAAT-like sequences. The promoter region also contains a functional interferon regulatory element, to which the interferon-induced nuclear factors IRF-1 and IRF-2 are capable of binding and which is able to confer interferon-inducible expression on a heterologous gene. There are also potential binding sites for the transcription factors AP-1 and AP-2 as well as multiple glucocorticoid response elements. A fusion gene containing 2.5 kb of murine IL-7R 5' regulatory sequence linked to the bacterial chloramphenicol acetyltransferase gene directed expression of chloramphenicol acetyltransferase activity in murine pre-B-cell line 70Z/3 but not in the mouse fibroblast cell line NIH 3T3. Comparison of the murine and human IL-7R exon/intron boundaries with those of other hematopoietin receptor superfamily members whose exon/intron boundaries are also known reveals a conserved evolutionary structure.


2000 ◽  
Vol 3 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Q. XIE ◽  
D. H. ALPERS

Xie, Q., and D. H. Alpers. The two isozymes of rat intestinal alkaline phosphatase are products of two distinct genes. Physiol Genomics 3: 1–8, 2000.—Rat intestinal alkaline phosphatases (IAP-I and -II) differ in primary structure, substrate specificity, tissue localization, and response to fat feeding. This study identifies two distinct genes (∼5–6 kb) corresponding to each isozyme and containing 11 exons of nearly identical size. The exon-intron junctions are identical with those found in IAP genes from other species. The 1.7 and 1.2 bp of 5′ flanking regions isolated from each gene, respectively, contain Sp1 and gut-enriched Kruppel-like factor (GKLF) binding sites, but otherwise show little identity. There is a potential CAAT-box 14 bp 5′ to the transcriptional start site, 36 bp upstream from IAP-I, and a TATA-box 31 bp 5′ to the transcriptional start site, 55 bp upstream from IAP-II. Transfection of these promoter regions (linked to luciferase as a reporter gene) into a kidney cell line, COS-7, produced the differential response to oleic acid expected from in vivo studies, i.e., threefold increase using the 5′ flanking region of IAP-II, but not IAP-I. This response was not reproduced by 5,8,11,14-eicosatetraynoic acid (ETYA) or clofibrate, suggesting that peroxisome proliferator response elements are not involved. Isolation of the IAP-II gene will allow determination of the sequences responsible for dietary fat response in the enterocyte.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingli Zhao ◽  
Shuling Li ◽  
Lijuan Wang ◽  
Li Jiang ◽  
Runqing Yang ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhiqiang Du ◽  
Jeniece Regan ◽  
Elizabeth Bartom ◽  
Wei-Sheng Wu ◽  
Li Zhang ◽  
...  

AbstractTranscriptional regulators are prevalent among identified prions in Saccharomyces cerevisiae, however, it is unclear how prions affect genome-wide transcription. We show here that the prion ([SWI+]) and mutant (swi1∆) forms of Swi1, a subunit of the SWI/SNF chromatin-remodeling complex, confer dramatically distinct transcriptomic profiles. In [SWI+] cells, genes encoding for 34 transcription factors (TFs) and 24 Swi1-interacting proteins can undergo transcriptional modifications. Several TFs show enhanced aggregation in [SWI+] cells. Further analyses suggest that such alterations are key factors in specifying the transcriptomic signatures of [SWI+] cells. Interestingly, swi1∆ and [SWI+] impose distinct and oftentimes opposite effects on cellular functions. Translation-associated activities, in particular, are significantly reduced in swi1∆ cells. Although both swi1∆ and [SWI+] cells are similarly sensitive to thermal, osmotic and drought stresses, harmful, neutral or beneficial effects were observed for a panel of tested chemical stressors. Further analyses suggest that the environmental stress response (ESR) is mechanistically different between swi1∆ and [SWI+] cells—stress-inducible ESR (iESR) are repressed by [SWI+] but unchanged by swi1∆ while stress-repressible ESR (rESR) are induced by [SWI+] but repressed by swi1∆. Our work thus demonstrates primarily gain-of-function outcomes through transcriptomic modifications by [SWI+] and highlights a prion-mediated regulation of transcription and phenotypes in yeast.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12617
Author(s):  
Yarui Wei ◽  
Shuliang Zhao ◽  
Na Liu ◽  
Yuxing Zhang

The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) plays a master regulatory role in the salicylic acid (SA) signal transduction pathway and plant systemic acquired resistance (SAR). Members of the NPR1-like gene family have been reported to the associated with biotic/abiotic stress in many plants, however the genome-wide characterization of NPR1-like genes has not been carried out in Chinese pear (Pyrus bretschneideri Reld). In this study, a systematic analysis was conducted on the characteristics of the NPR1-like genes in P. bretschneideri Reld at the whole-genome level. A total nine NPR1-like genes were detected which eight genes were located on six chromosomes and one gene was mapped to scaffold. Based on the phylogenetic analysis, the nine PbrNPR1-like proteins were divided into three clades (Clades I–III) had similar gene structure, domain and conserved motifs. We sorted the cis-acting elements into three clades, including plant growth and development, stress responses, and hormone responses in the promoter regions of PbrNPR1-like genes. The result of qPCR analysis showed that expression diversity of PbrNPR1-like genes in various tissues. All the genes were up-regulated after SA treatment in leaves except for Pbrgene8896. PbrNPR1-like genes showed circadian rhythm and significantly different expression levels after inoculation with Alternaria alternata. These findings provide a solid insight for understanding the functions and evolution of PbrNPR1-like genes in Chinese pear.


2021 ◽  
Author(s):  
Chitvan Mittal ◽  
Matthew J. Rossi ◽  
B. Franklin Pugh

AbstractChEC-seq is a method used to identify protein-DNA interactions across a genome. It involves fusing micrococcal nuclease (MNase) to a protein of interest. In principle, specific genome-wide interactions of the fusion protein with chromatin result in local DNA cleavages that can be mapped by DNA sequencing. ChEC-seq has been used to draw conclusions about broad gene-specificities of certain protein-DNA interactions. In particular, the transcriptional regulators SAGA, TFIID, and Mediator are reported to generally occupy the promoter/UAS of genes transcribed by RNA polymerase II in yeast. Here we compare published yeast ChEC-seq data performed with a variety of protein fusions across essentially all genes, and find high similarities with negative controls. We conclude that ChEC-seq patterning for SAGA, TFIID, and Mediator differ little from background at most promoter regions, and thus cannot be used to draw conclusions about broad gene specificity of these factors.


2019 ◽  
Author(s):  
Remi L. Gratacap ◽  
Tim Regan ◽  
Carola E. Dehler ◽  
Samuel A.M. Martin ◽  
Pierre Boudinot ◽  
...  

1AbstractGenome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of genome editing to evaluate putative disease resistance genes in cell lines, and the use of genome-wide CRISPR screens is currently limited by a lack of available tools and techniques. In the current study, an optimised protocol using lentivirus transduction for efficient integration of constructs into the genome of a Chinook salmon (Oncorhynchus tshwaytcha) cell line (CHSE-214) was developed. As proof-of-principle, two target genes were edited with high efficiency in an EGFP-Cas9 stable CHSE cell line; specifically, the exogenous, integrated EGFP and the endogenous RIG-I locus. Finally, the effective use of antibiotic selection to enrich the successfully edited targeted population was demonstrated. The optimised lentiviral-mediated CRISPR method reported here increases possibilities for efficient genome editing in salmonid cells, in particular for future applications of genome-wide CRISPR screens for disease resistance.


2021 ◽  
Vol 22 (22) ◽  
pp. 12317
Author(s):  
Heng Zhang ◽  
Xu Zhang ◽  
Jia Zhao ◽  
Li Sun ◽  
Haiyan Wang ◽  
...  

GDSL-type esterase/lipase proteins (GELPs) characterized by a conserved GDSL motif at their N-terminus belong to the lipid hydrolysis enzyme superfamily. In plants, GELPs play an important role in plant growth, development and stress response. The studies of the identification and characterization of the GELP gene family in Triticeae have not been reported. In this study, 193 DvGELPs were identified in Dasypyrum villosum and classified into 11 groups (clade A–K) by means of phylogenetic analysis. Most DvGELPs contain only one GDSL domain, only four DvGELPs contain other domains besides the GDSL domain. Gene structure analysis indicated 35.2% DvGELP genes have four introns and five exons. In the promoter regions of the identified DvGELPs, we detected 4502 putative cis-elements, which were associated with plant hormones, plant growth, environmental stress and light responsiveness. Expression profiling revealed 36, 44 and 17 DvGELPs were highly expressed in the spike, the root and the grain, respectively. Further investigation of a root-specific expressing GELP, DvGELP53, indicated it was induced by a variety of biotic and abiotic stresses. The knockdown of DvGELP53 inhibited long-distance movement of BSMV in the tissue of D. villosum. This research provides a genome-wide glimpse of the D. villosum GELP genes and hints at the participation of DvGELP53 in the interaction between virus and plants.


Sign in / Sign up

Export Citation Format

Share Document