scholarly journals Bioinformatics-based prediction of conformational epitopes for human parechovirus

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247423
Author(s):  
Hao Rong ◽  
Liping Wang ◽  
Liuying Gao ◽  
Yulu Fang ◽  
Qin Chen ◽  
...  

Human parechoviruses (HPeVs) are human pathogens that usually cause diseases ranging from rash to neonatal sepsis in young children. HPeV1 and HPeV3 are the most frequently reported genotypes and their three-dimensional structures have been determined. However, there is a lack of systematic research on the antigenic epitopes of HPeVs, which are useful for understanding virus-receptor interactions, developing antiviral agents or molecular diagnostic tools, and monitoring antigenic evolution. Thus, we systematically predicted and compared the conformational epitopes of HPeV1 and HPeV3 using bioinformatics methods in the study. The results showed that both epitopes clustered into three sites (sites 1, 2 and 3). Site 1 was located on the "northern rim" near the fivefold vertex; site 2 was on the "puff"; and site 3 was divided into two parts, of which one was located on the "knob" and the other was close to the threefold vertex. The predicted epitopes highly overlapped with the reported antigenic epitopes, which indicated that the prediction results were accurate. Although the distribution positions of the epitopes of HPeV1 and HPeV3 were highly consistent, the residues varied largely and determined the genotypes. Three amino acid residues, VP3-91N, -92H and VP0-257S, were the key residues for monoclonal antibody (mAb) AM28 binding to HPeV1 and were also of great significance in distinguishing HPeV1 and HPeV3. We also found that two residues, VP1-85N and -87D, might affect the capability of mAb AT12-015 to bind to HPeV3.

2011 ◽  
Author(s):  
Michael K Leonard Jr ◽  
Henry M Blumberg ◽  
Carlos Franco-Paredes

Mycobacterium leprae infection (i.e., leprosy) is a disease that has been recognized—and often misunderstood—since ancient times. The emergence of HIV/AIDS and the development of newer culture methodologies and molecular diagnostic tools have brought about increased interest in the epidemiology, diagnosis, and treatment of human infections from nontuberculous mycobacteria (NTM). More than 140 species of NTM have been identified; approximately 50 of these may be pathogenic for humans, causing a broad spectrum of disease. This chapter covers both M. leprae and selected NTM organisms, including M. avium complex; M. kansasii; M. marinum; and rapidly growing mycobacteria such as M. chelonae, M. fortuitum, and M. abscessus. The section on leprosy encompasses subsections on diagnosis, clinical manifestations and classification, laboratory studies, treatment, and leprosy reactions. Treatments for nontuberculous mycobacteria infections are also covered. Figures include a natural history of leprosy, tuberculoid leprosy, lepromatous leprosy, and various forms of borderline leprosy, as well as type 1 and type 2 leprosy reaction. Tables include the Ridley-Jopling classification of leprosy, recommendations for treatment of leprosy, clinical characteristics and treatment of leprosy, major clinical syndromes associated with nontuberculous mycobacterial infections, diagnosing nontuberculous mycobacterial lung disease, a listing of slow and rapidly growing mycobacteria that are human pathogens, plus treatment regimens for selected nontuberculous mycobacterial infections in adults. This review contains 59 references.


2017 ◽  
Vol 07 (03) ◽  
pp. 042-048
Author(s):  
Gunimala Chakraborty ◽  
Indrani Karunasagar ◽  
Anirban Chakraborty

AbstractDelivery of quality healthcare in case of an infectious disease depends on how efficiently and how quickly the responsible pathogens are detected from the samples. Molecular methods can detect the presence of pathogens in a rapid and sensitive manner. Over the years, a number of such assays have been developed. However, these methods, although highly reliable and efficient, require use of expensive equipment, reagents, and trained personnel. Therefore, development of molecular assays that are simple, rapid, cost-effective, yet sensitive, is highly warranted to ensure efficient management or treatment strategies. Loop-mediated isothermal amplification (LAMP), a technique invented in the year 2000, is a novel method that amplifies DNA at isothermal conditions. Since its invention, this technique has been one of the most extensively used molecular diagnostic tools in the field of diagnostics offering rapid, accurate and cost-effective diagnosis of infectious diseases. Using the LAMP principle, many commercial kits have been developed in the last decade for a variety of human pathogens including bacteria, viruses and parasites. Currently LAMP assay is being considered as an effective diagnostic tool for use in developing countries because of its simple working protocol, allowing even an onsite application. The focus of this review is to describe the salient features of this technique the current status of development of LAMP assays with an emphasis on the pathogens of clinical significance.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1042
Author(s):  
Jing-Jing Chen ◽  
Xiao Liang ◽  
Tian-Jiao Chen ◽  
Jin-Ling Yang ◽  
Ping Zhu

The β-glycosidase LXYL-P1-2 identified from Lentinula edodes can be used to hydrolyze 7-β-xylosyl-10-deacetyltaxol (XDT) into 10-deacetyltaxol (DT) for the semi-synthesis of Taxol. Recent success in obtaining the high-resolution X-ray crystal of LXYL-P1-2 and resolving its three-dimensional structure has enabled us to perform molecular docking of LXYL-P1-2 with substrate XDT and investigate the roles of the three noncatalytic amino acid residues located around the active cavity in LXYL-P1-2. Site-directed mutagenesis results demonstrated that Tyr268 and Ser466 were essential for maintaining the β-glycosidase activity, and the L220G mutation exhibited a positive effect on increasing activity by enlarging the channel that facilitates the entrance of the substrate XDT into the active cavity. Moreover, introducing L220G mutation into the other LXYL-P1-2 mutant further increased the enzyme activity, and the β-d-xylosidase activity of the mutant EP2-L220G was nearly two times higher than that of LXYL-P1-2. Thus, the recombinant yeast GS115-EP2-L220G can be used for efficiently biocatalyzing XDT to DT for the semi-synthesis of Taxol. Our study provides not only the prospective candidate strain for industrial production, but also a theoretical basis for exploring the key amino acid residues in LXYL-P1-2.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julia Suárez-González ◽  
Verónica Seidel ◽  
Cristina Andrés-Zayas ◽  
Elvira Izquierdo ◽  
Ismael Buño

Abstract Background Bardet–Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy disorder. Many BBS disease-causing genetic variants have been identified due to the advancement of molecular diagnostic tools. We report on a novel pathogenic variant in a consanguineous Pakistani family with an affected child. Case presentation Clinical exome sequencing was used to search for BBS causing variants in the affected individual and identified a novel homozygous splice-site variant in the BBS9 gene (c.702 + 1del). Sanger sequencing was performed for variant validation and segregation studies. Expression analysis using mRNA levels to assess the functional impact of the novel variant demonstrated skipping of exon 7 in the affected alleles, suggesting a truncating effect. Three-dimensional structural modelling was used to predict pathogenicity of the variant residue and the alteration leads to a partial deletion of the PHTB1_N domain and a total deletion of the PHTB1_C domain. Conclusion The study of this case expands the spectrum of biallelic variants in the BBS9 gene associated with BBS and increased the knowledge on the molecular consequences of splicing variation c.702 + 1del.


2004 ◽  
Vol 71 ◽  
pp. 1-14
Author(s):  
David Leys ◽  
Jaswir Basran ◽  
François Talfournier ◽  
Kamaldeep K. Chohan ◽  
Andrew W. Munro ◽  
...  

TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.


3 Biotech ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Domenico Rizzo ◽  
Nicola Luchi ◽  
Daniele Da Lio ◽  
Linda Bartolini ◽  
Francesco Nugnes ◽  
...  

AbstractThe red-necked longhorn beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) is native to east Asia, where it is a major pest of cultivated and ornamental species of the genus Prunus. Morphological or molecular discrimination of adults or larval specimens is required to identify this invasive wood borer. However, recovering larval stages of the pest from trunks and branches causes extensive damage to plants and is timewasting. An alternative approach consists in applying non-invasive molecular diagnostic tools to biological traces (i.e., fecal pellets, frass). In this way, infestations in host plants can be detected without destructive methods. This paper presents a protocol based on both real-time and visual loop-mediated isothermal amplification (LAMP), using DNA of A. bungii extracted from fecal particles in larval frass. Laboratory validations demonstrated the robustness of the protocols adopted and their reliability was confirmed performing an inter-lab blind panel. The LAMP assay and the qPCR SYBR Green method using the F3/B3 LAMP external primers were equally sensitive, and both were more sensitive than the conventional PCR (sensitivity > 103 to the same starting matrix). The visual LAMP protocol, due to the relatively easy performance of the method, could be a useful tool to apply in rapid monitoring of A. bungii and in the management of its outbreaks.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
James M. Hodge ◽  
Andrey A. Yurchenko ◽  
Dmitriy A. Karagodin ◽  
Reem A. Masri ◽  
Ryan C. Smith ◽  
...  

Abstract Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3779
Author(s):  
Ruben Soto-Acosta ◽  
Eunkyung Jung ◽  
Li Qiu ◽  
Daniel J. Wilson ◽  
Robert J. Geraghty ◽  
...  

Discovery of compound 1 as a Zika virus (ZIKV) inhibitor has prompted us to investigate its 7H-pyrrolo[2,3-d]pyrimidine scaffold, revealing structural features that elicit antiviral activity. Furthermore, we have demonstrated that 9H-purine or 1H-pyrazolo[3,4-d]pyrimidine can serve as an alternative core structure. Overall, we have identified 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs including compounds 1, 8 and 11 as promising antiviral agents against flaviviruses ZIKV and dengue virus (DENV). While the molecular target of these compounds is yet to be elucidated, 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs are new chemotypes in the design of small molecules against flaviviruses, an important group of human pathogens.


2005 ◽  
Vol 79 (6) ◽  
pp. 3289-3296 ◽  
Author(s):  
Choong-Tat Keng ◽  
Aihua Zhang ◽  
Shuo Shen ◽  
Kuo-Ming Lip ◽  
Burtram C. Fielding ◽  
...  

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 521
Author(s):  
Juan García-Bernalt Diego ◽  
Pedro Fernández-Soto ◽  
Antonio Muro

Neglected Tropical Diseases (NTDs), particularly those caused by parasites, remain a major Public Health problem in tropical and subtropical regions, with 10% of the world population being infected. Their management and control have been traditionally hampered, among other factors, by the difficulty to deploy rapid, specific, and affordable diagnostic tools in low resource settings. This is especially true for complex PCR-based methods. Isothermal nucleic acid amplification techniques, particularly loop-mediated isothermal amplification (LAMP), appeared in the early 21st century as an alternative to PCR, allowing for a much more affordable molecular diagnostic. Here, we present the status of LAMP assays development in parasite-caused NTDs. We address the progress made in different research applications of the technique: xenomonitoring, epidemiological studies, work in animal models and clinical application both for diagnosis and evaluation of treatment success. Finally, we try to shed a light on the improvements needed to achieve a true point-of-care test and the future perspectives in this field.


Sign in / Sign up

Export Citation Format

Share Document