scholarly journals Energetics contribution during no-gi Brazilian jiu jitsu sparring and its association with regional body composition

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259027
Author(s):  
Dalton Müller Pessôa Filho ◽  
Andrei Sancassani ◽  
Leandro Oliveira da Cruz Siqueira ◽  
Danilo Alexandre Massini ◽  
Luiz Gustavo Almeida Santos ◽  
...  

We used measurements of metabolic perturbation obtained after sparring to estimate energetics contribution during no-gi Brazilian jiu-jitsu. Ten advanced grapplers performed two six-minute sparring bouts separated by 24 hours. Kinetics of recovery rate of oxygen uptake was modelled and post-combat-sparring blood-lactate concentration measured to estimate oxygen equivalents for phospholytic and glycolytic components of anaerobic energetics, respectively. Linear regression was used to estimate end-combat-sparring rate of oxygen uptake. Regional and whole-body composition were assessed using dual X-ray absorptiometry with associations between these measurements and energy turnover explored using Pearson’s correlation coefficient (significance, P < 0.05). Estimated oxygen equivalents for phospholytic and glycolytic contributions to anaerobic metabolism were 16.9 ± 8.4 (~28%) and 44.6 ± 13.5 (~72%) mL∙kg-1, respectively. Estimated end-exercise rate of oxygen uptake was 44.2 ± 7.0 mL∙kg-1∙min-1. Trunk lean mass was positively correlated with both total anaerobic and glycolytic-specific energetics (total, R = 0.645, p = 0.044; glycolytic, R = 0.692, p = 0.027) and negatively correlated with end-exercise rate of oxygen uptake (R = -0.650, p = 0.042). There were no correlations for any measurement of body composition and phospholytic-specific energetics. Six minutes of no-gi Brazilian jiu-jitsu sparring involves high relative contribution from the glycolytic component to total anaerobic energy provision and the link between this energetics profile and trunk lean mass is consistent with the predominance of ground-based combat that is unique for this combat sport. Training programs for Brazilian jiu-jitsu practitioners should be designed with consideration given to these specific energetics characteristics.

2021 ◽  
Vol 12 ◽  
Author(s):  
Danilo A. Massini ◽  
Tiago A. F. Almeida ◽  
Camila M. T. Vasconcelos ◽  
Anderson G. Macedo ◽  
Mário A. C. Espada ◽  
...  

This study assessed the energy cost in swimming (C) during short and middle distances to analyze the sex-specific responses of C during supramaximal velocity and whether body composition account to the expected differences. Twenty-six swimmers (13 men and 13 women: 16.7 ± 1.9 vs. 15.5 ± 2.8 years old and 70.8 ± 10.6 vs. 55.9 ± 7.0 kg of weight) performed maximal front crawl swimming trials in 50, 100, and 200 m. The oxygen uptake (V˙O2) was analyzed along with the tests (and post-exercise) through a portable gas analyser connected to a respiratory snorkel. Blood samples were collected before and after exercise (at the 1st, 3rd, 5th, and 7th min) to determine blood lactate concentration [La–]. The lean mass of the trunk (LMTrunk), upper limb (LMUL), and lower limb (LMLL) was assessed using dual X-ray energy absorptiometry. Anaerobic energy demand was calculated from the phosphagen and glycolytic components, with the first corresponding to the fast component of the V˙O2 bi-exponential recovery phase and the second from the 2.72 ml × kg–1 equivalent for each 1.0 mmol × L–1 [La–] variation above the baseline value. The aerobic demand was obtained from the integral value of the V˙O2 vs. swimming time curve. The C was estimated by the rate between total energy releasing (in Joules) and swimming velocity. The sex effect on C for each swimming trial was verified by the two-way ANOVA (Bonferroni post hoc test) and the relationships between LMTrunk, LMUL, and LMLL to C were tested by Pearson coefficient. The C was higher for men than women in 50 (1.8 ± 0.3 vs. 1.3 ± 0.3 kJ × m–1), 100 (1.4 ± 0.1 vs. 1.0 ± 0.2 kJ × m–1), and 200 m (1.0 ± 0.2 vs. 0.8 ± 0.1 kJ × m–1) with p &lt; 0.01 for all comparisons. In addition, C differed between distances for each sex (p &lt; 0.01). The regional LMTrunk (26.5 ± 3.6 vs. 20.1 ± 2.6 kg), LMUL (6.8 ± 1.0 vs. 4.3 ± 0.8 kg), and LMLL (20.4 ± 2.6 vs. 13.6 ± 2.5 kg) for men vs. women were significantly correlated to C in 50 (R2adj = 0.73), 100 (R2adj = 0.61), and 200 m (R2adj = 0.60, p &lt; 0.01). Therefore, the increase in C with distance is higher for men than women and is determined by the lean mass in trunk and upper and lower limbs independent of the differences in body composition between sexes.


2003 ◽  
Vol 94 (6) ◽  
pp. 2107-2112 ◽  
Author(s):  
Taku Hamada ◽  
Hideki Sasaki ◽  
Tatsuya Hayashi ◽  
Toshio Moritani ◽  
Kazuwa Nakao

There is considerable evidence to suggest that electrical stimulation (ES) activates glucose uptake in rodent skeletal muscle. It is, however, unknown whether ES can lead to similar metabolic enhancement in humans. We employed low-frequency ES through surface electrodes placed over motor points of quadriceps femoris muscles. In male subjects lying in the supine position, the highest oxygen uptake was obtained by a stimulation pattern with 0.2-ms biphasic square pulses at 20 Hz and a 1-s on-off duty cycle. Oxygen uptake was increased by approximately twofold throughout the 20-min stimulation period and returned to baseline immediately after stimulation. Concurrent elevation of the respiratory exchange ratio and blood lactate concentration indicated anaerobic glycogen breakdown and utilization during ES. Whole body glucose uptake determined by the glucose disposal rate during euglycemic clamp was acutely increased by 2.5 mg · kg−1 · min−1in response to ES and, moreover, remained elevated by 3–4 mg · kg−1 · min−1for at least 90 min after cessation of stimulation. Thus the stimulatory effect of ES on whole body glucose uptake persisted not only during, but also after, stimulation. Low-frequency ES may become a useful therapeutic approach to activate energy and glucose metabolism in humans.


2000 ◽  
Vol 88 (6) ◽  
pp. 2251-2259 ◽  
Author(s):  
Bradley C. Nindl ◽  
Everett A. Harman ◽  
James O. Marx ◽  
Lincoln A. Gotshalk ◽  
Peter N. Frykman ◽  
...  

Data are lacking regarding regional morphological changes among women after prolonged physical training. This study employed dual-energy X-ray absorptiometry to assess changes in whole body and regional (i.e., trunk, legs, arms) fat mass, lean mass, and bone mineral content body composition adaptations in 31 healthy women pre-, mid-, and post-6 mo of periodized physical training. These results were compared with those of 1) a control group of women who had not undergone the training program and were assessed pre- and post-6 mo and 2) a group of 18 men that was tested only once. Additionally, magnetic resonance imaging was used to assess changes in muscle morphology of the thigh in a subset of 11 members of the training group. Physical training consisted of a combination of aerobic and resistance exercise in which the subjects engaged for 5 days/wk for 24 wk. Overall, the training group experienced a 2.2% decrease, a 10% decrease, and a 2.2% increase for body mass, fat mass, and soft tissue lean mass, respectively. No changes in bone mineral content were detected. The women had less of their soft tissue lean mass distributed in their arms than did the men, both before and after the women were trained. Novel to this study were the striking differences in the responses in the tissue composition of the arms (31% loss in fat mass but no change in lean mass) compared with the legs (5.5% gain in lean mass but no change in fat mass). There was a 12% fat loss in the trunk with no change in soft tissue lean mass. Dual-energy X-ray absorptiometry and magnetic resonance imaging fat mass measurements showed good agreement ( r = 0.72–0.92); their lean mass measurements were similar as well, showing ∼5.5% increases in leg lean tissue. These findings show the importance of considering regional body composition changes, rather than whole body changes alone when assessing the effects of a periodized physical training program.


2019 ◽  
Vol 25 (6) ◽  
pp. 485-489
Author(s):  
Luciana Duarte Pimenta ◽  
Danilo Alexandre Massini ◽  
Daniel Dos Santos ◽  
Leandro Oliveira Da Cruz Siqueira ◽  
Andrei Sancassani ◽  
...  

ABSTRACT Introduction There is limited consensus regarding the recommendation of the most effective form of exercise for bone integrity, despite the fact that weight training exercise promotes an increase in muscle mass and strength as recurrent responses. However, strength variations in women do not depend on muscle mass development as they do in men, but strength enhancement has shown the potential to alter bone mineral content (BMC) for both sexes. Objective This study analyzed the potential of muscle strength, as well as that of whole-body and regional body composition, to associate femoral BMC in young women. Methods Fifteen female college students (aged 24.9 ± 7.2 years) were assessed for regional and whole-body composition using dual-energy X-ray absorptiometry (DXA). Maximum muscle strength was assessed by the one-repetition maximum (1RM) test in the following exercises: bench press (BP), lat pulldown (LP), knee flexion (KF), knee extension (KE) and 45° leg press (45LP). Linear regression analyzed BMC relationships with regional composition and 1RM values. Dispersion and error measures (R 2 aj and SEE), were tested, defining p ≤0.05. Results Among body composition variables, only total lean body mass was associated with femoral BMC values (R 2 aj = 0.37, SEE = 21.3 g). Regarding strength values, 1RM presented determination potential on femoral BMC in the CE exercise (R 2 aj = 0.46, SEE = 21.3 g). Conclusions Muscle strength aptitude in exercises for femoral regions is relevant to the femoral mineralization status, having associative potential that is similar to and independent of whole-body lean mass. Therefore, training routines to increase muscle strength in the femoral region are recommended. In addition, increasing muscle strength in different parts of the body may augment bone remodeling stimulus, since it can effectively alter total whole-body lean mass. Level of Evidence II; Development of diagnostic criteria in consecutive patients (with universally applied reference ‘‘gold’’ standard).


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2006 ◽  
Vol 16 (3) ◽  
pp. 281-295 ◽  
Author(s):  
Heidi L. Petersen ◽  
C. Ted Peterson ◽  
Manju B. Reddy ◽  
Kathy B. Hanson ◽  
James H. Swain ◽  
...  

This study determined the effect of training on body composition, dietary intake, and iron status of eumenorrheic female collegiate swimmers (n = 18) and divers (n = 6) preseason and after 16 wk of training. Athletes trained on dryland (resistance, strength, fexibility) 3 d/wk, 1.5 h/d and in-water 6 d/wk, nine, 2-h sessions per week (6400 to 10,000 kJ/d). Body-mass index (kg/m2; P = 0.05), waist and hip circumferences (P ≤ 0.0001), whole body fat mass (P = 0.0002), and percentage body fat (P ≤ 0.0001) decreased, whereas lean mass increased (P = 0.028). Using dual-energy X-ray absorptiometry, we found no change in regional lean mass, but fat decreased at the waist (P = 0.0002), hip (P = 0.0002), and thigh (P = 0.002). Energy intake (10,061 ± 3617 kJ/d) did not change, but dietary quality improved with training, as refected by increased intakes of fber (P = 0.036), iron (P = 0.015), vitamin C (P = 0.029), vitamin B-6 (P = 0.032), and fruit (P = 0.003). Iron status improved as refected by slight increases in hemoglobin (P = 0.046) and hematocrit (P = 0.014) and decreases in serum transferrin receptor (P ≤ 0.0001). Studies are needed to further evaluate body composition and iron status in relation to dietary intake in female swimmers.


2016 ◽  
Vol 41 (4) ◽  
pp. 397-404 ◽  
Author(s):  
Eva Maria Støa ◽  
Lill-Katrin Nyhus ◽  
Sandra Claveau Børresen ◽  
Caroline Nygaard ◽  
Åse Marie Hovet ◽  
...  

Indirect calorimetry is a common and noninvasive method to estimate rate of fat oxidation (FatOx) during exercise, and test–retest reliability should be considered when interpreting results. Diet also has an impact on FatOx. The aim of the present study was to investigate day to day variations in FatOx during moderate exercise given the same diet and 2 different isoenergetic diets. Nine healthy, moderately-trained females participated in the study. They performed 1 maximal oxygen uptake test and 4 FatOx tests. Habitual diets were recorded and repeated to assess day to day variability in FatOx. FatOx was also measured after 1 day of fat-rich (26.8% carbohydrates (CHO), 23.2% protein, 47.1% fat) and 1 day of CHO-rich diet (62.6% CHO, 20.1% protein, 12.4% fat). The reliability test revealed no differences in FatOx, respiratory exchange ratio (RER), oxygen uptake, carbon dioxide production, heart rate, blood lactate concentration, or blood glucose between the 2 habitual diet days. FatOx decreased after the CHO-rich diet compared with the habitual day 2 (from 0.42 ± 0.15 to 0.29 ± 0.13 g·min−1, p < 0.05). No difference was found in FatOx between fat-rich diet and the 2 habitual diet days. FatOx was 31% lower (from 0.42 ± 0.14 to 0.29 ± 0.13 g·min−1, p < 0.01) after the CHO-rich diet compared with the fat-rich diet. Using RER data to measure FatOx is a reliable method as long as the diet is strictly controlled. However, even a 1-day change in macronutrient composition will likely affect the FatOx results.


2016 ◽  
Vol 53 (1) ◽  
pp. 179-187 ◽  
Author(s):  
José Vilaça-Alves ◽  
Nuno Miguel Freitas ◽  
Francisco José Saavedra ◽  
Christopher B. Scott ◽  
Victor Machado dos Reis ◽  
...  

AbstractThe aim of this study was to compare the values of oxygen uptake (VO2) during and after strength training exercises (STe) and ergometer exercises (Ee), matched for intensity and exercise time. Eight men (24 ± 2.33 years) performed upper and lower body cycling Ee at the individual’s ventilatory threshold (VE/VCO2). The STe session included half squats and the bench press which were performed with a load at the individual blood lactate concentration of 4 mmol/l. Both sessions lasted 30 minutes, alternating 50 seconds of effort with a 10 second transition time between upper and lower body work. The averaged overall VO2 between sessions was significantly higher for Ee (24.96 ± 3.6 ml·kg·min-1) compared to STe (21.66 ± 1.77 ml·kg·min-1) (p = 0.035), but this difference was only seen for the first 20 minutes of exercise. Absolute VO2 values between sessions did not reveal differences. There were more statistically greater values in Ee compared to STe, regarding VO2 of lower limbs (25.44 ± 3.84 ml·kg·min-1 versus 21.83 ± 2·24 ml·kg·min-1; p = 0.038) and upper limbs (24.49 ± 3.84 ml·kg·min-1 versus 21.54 ± 1.77 ml·kg·min-1; p = 0.047). There were further significant differences regarding the moment effect (p<0.0001) of both STe and Ee sessions. With respect to the moment × session effect, only VO2 5 minutes into recovery showed significant differences (p = 0.017). In conclusion, although significant increases in VO2 were seen following Ee compared to STe, it appears that the load/intensity, and not the material/equipment used for the execution of an exercise, are variables that best influence oxygen uptake.


Author(s):  
Nicola Giovanelli ◽  
Lara Mari ◽  
Asia Patini ◽  
Stefano Lazzer

Purpose: To compare energetics and spatiotemporal parameters of steep uphill pole walking on a treadmill and overground. Methods: First, the authors evaluated 6 male trail runners during an incremental graded test on a treadmill. Then, they performed a maximal overground test with poles and an overground test at 80% (OG80) of vertical velocity of maximal overground test with poles on an uphill mountain path (length = 1.3 km, elevation gain = 433 m). Finally, they covered the same elevation gain using poles on a customized treadmill at the average vertical velocity of the OG80. During all the tests, the authors measured oxygen uptake, carbon dioxide production, heart rate, blood lactate concentration, and rate of perceived exertion. Results: Treadmills required lower metabolic power (15.3 [1.9] vs 16.6 [2.0] W/kg, P = .002) and vertical cost of transport (49.6 [2.7] vs 53.7 [2.1] J/kg·m, P < .001) compared with OG80. Also, oxygen uptake was lower on a treadmill (41.7 [5.0] vs 46.2 [5.0] mL/kg·min, P = .001). Conversely, respiratory quotient was higher on TR80 compared with OG80 (0.98 [0.02] vs 0.89 [0.04], P = .032). In addition, rate of perceived exertion was higher on a treadmill and increased with elevation (P < .001). The authors did not detect any differences in other physiological measurements or in spatiotemporal parameters. Conclusions: Researchers, coaches, and athletes should be aware that steep treadmill pole walking requires lower energy consumption but same heart rate and rate of perceived exertion than overground pole walking at the same average intensity.


Sign in / Sign up

Export Citation Format

Share Document