scholarly journals Increased Homocysteine and S-Adenosylhomocysteine Concentrations and DNA Hypomethylation in Vascular Disease

2003 ◽  
Vol 49 (8) ◽  
pp. 1292-1296 ◽  
Author(s):  
Rita Castro ◽  
Isabel Rivera ◽  
Eduard A Struys ◽  
Erwin E W Jansen ◽  
Paula Ravasco ◽  
...  

Abstract Background: The pathogenic mechanism of homocysteine’s effect on cardiovascular risk is poorly understood. Recent studies show that DNA hypomethylation induced by increases in S-adenosylhomocysteine (AdoHcy), an intermediate of Hcy metabolism and a potent inhibitor of methyltransferases, may be involved in homocysteine-related pathology. Methods: We measured fasting plasma total Hcy (tHcy), AdoHcy, and S-adenosylmethionine (AdoMet) and methylation in leukocytes in 17 patients with vascular disease and in 15 healthy, age- and sex-matched controls. Results: Patient with vascular disease had significantly higher plasma tHcy and AdoHcy concentrations and significantly lower plasma AdoMet/AdoHcy ratios and genomic DNA methylation. AdoMet concentrations were not significantly different between the two groups. More than 50% of the patients fell into the highest quartiles of plasma tHcy, AdoHcy, and [3H]dCTP incorporation/μg of DNA (meaning the lowest quartile of DNA methylation status) and into the lowest quartile of the AdoMet/AdoHcy ratios of the control group. Plasma tHcy was significantly correlated with plasma AdoHcy and AdoMet/AdoHcy ratios (n = 32; P < 0.001). DNA methylation status was significantly correlated with plasma tHcy and AdoHcy (n = 32; P < 0.01) but not with plasma AdoMet/AdoHcy ratios. Conclusion: Global DNA methylation may be altered in vascular disease, with a concomitant increase in plasma tHcy and AdoHcy.

2018 ◽  
pp. 59-66
Author(s):  
Thanh Tin Nguyen ◽  
Phan Minh Triet Le ◽  
Viet Nhan Nguyen ◽  
Cristina Giuliani ◽  
Donata Luiselli ◽  
...  

Introduction: Agent Orange was the most extensively used among herbicides sprayed on Vietnam territory during the Vietnam War. Its by-product, 2,3,7,8-tetrachlorodibenzo-paradioxin (Dioxin), is an extremely toxic and persistent chemical. The effects of this spraying on both Vietnamese and United States Veterans health has been reported in many publications. However, there wasn’t any study of the effects at the molecular level of the residual Dioxin in the environment on present Vietnamese civilians living in contaminated areas. Objective: To investigate the association between residual Agent Orange/Dioxin in the environment and the alterations of DNA methylation in the peripheral blood of the present day Vietnamese population living in spraying areas. Methods: Cross-sectional study. The subjects were 188 individuals who came to Hue University Hospital for health care: 94 individuals for case group from sprayed areas (A Luoi and Nam Dong, Thua Thien Hue Province), and 94 individuals for the control group from non-sprayed areas (Quang Binh to North Vietnam). MALDI-TOF MS technique was used to detect the alterations of DNA methylation of CYP1A1 gene. Results: Among 22 CpG position of CYP1A1 gene were investigated, there were the DNA hypomethylation at CpG_2.3.4, CpG_5, CpG_12.13 in case group compared to the control (p<0.05). After dividing case group into 2 subgroups, we found the significant DNA hypomethylation at CpG_2.3.4, CpG_5, CpG_9, CpG_10, CpG_11, CpG_12.13, CpG_17, CpG_18.19 in subgroup CASES_F_P compared to CASES_NON_F_P also control group (p< 0.05). Conclusions: Individuals living in A Luoi and Nam Dong– the Dioxin contaminated areas– had DNA hypomethylation in CYP1A1 gene. The DNA hypomethylation seem not due to the effects of residual Dioxin in the environment in present day, it was likely to be inherited by epigenetic way from the DNA methylation alterations on their parents who had directly exposure to that spraying. This theory should be verified through extensive studies with CASES_F_P family and more genes will be investigated. Key words: Agent Orange, Dioxin, DNA methylation, CYP1A1


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 680
Author(s):  
Rujuan Dai ◽  
Zhuang Wang ◽  
S. Ansar Ahmed

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that afflicts multiple organs, especially kidneys and joints. In addition to genetic predisposition, it is now evident that DNA methylation and microRNAs (miRNAs), the two major epigenetic modifications, are critically involved in the pathogenesis of SLE. DNA methylation regulates promoter accessibility and gene expression at the transcriptional level by adding a methyl group to 5′ cytosine within a CpG dinucleotide. Extensive evidence now supports the importance of DNA hypomethylation in SLE etiology. miRNAs are small, non-protein coding RNAs that play a critical role in the regulation of genome expression. Various studies have identified the signature lupus-related miRNAs and their functional contribution to lupus incidence and progression. In this review, the mutual interaction between DNA methylation and miRNAs regulation in SLE is discussed. Some lupus-associated miRNAs regulate DNA methylation status by targeting the DNA methylation enzymes or methylation pathway-related proteins. On the other hand, DNA hyper- and hypo-methylation are linked with dysregulated miRNAs expression in lupus. Further, we specifically discuss the genetic imprinting Dlk1-Dio3 miRNAs that are subjected to DNA methylation regulation and are dysregulated in several autoimmune diseases, including SLE.


Author(s):  
Mai Mahmoud Shaker ◽  
Taghreed Abdelmoniem shalabi ◽  
Khalda said Amr

Abstract Background DNA methylation is an epigenetic process for modifying transcription factors in various genes. Methylenetetrahydrofolate reductase (MTHFR) stimulates synthesis of methyl radical in the homocysteine cycle and delivers methyl groups needed in DNA methylation. Furthermore, numerous studies have linked gene polymorphisms of this enzyme with a larger risk of recurrent pregnancy loss (RPL), yet scarce information is available concerning the association between epigenetic deviations in this gene and RPL. Hypermethylation at precise DNA sequences can function as biomarkers for a diversity of diseases. We aimed by this study to evaluate the methylation status of the promoter region of MTHFR gene in women with RPL compared to healthy fertile women. It is a case–control study. Hundred RPL patients and hundred healthy fertile women with no history of RPL as controls were recruited. MTHFR C677T was assessed by polymerase chain reaction-restriction fragment length polymorphism (RFLP). Quantitative evaluation of DNA methylation was performed by high-resolution melt analysis by real-time PCR. Results The median of percentage of MTHFR promoter methylation in RPL cases was 6.45 [0.74–100] vs. controls was 4.50 [0.60–91.7], P value < 0.001. In the case group, 57 hypermethylated and 43 normo-methylated among RPL patients vs. 40 hypermethylated and 60 normo-methylated among controls, P< 0.005. Frequency of T allele in C677T MTHFR gene among RPL patients was 29% vs. 23% among the control group; C allele vs. T allele: odds ratio (OR) = 1.367 (95% confidence interval (CI) 0.725–2.581). Conclusion Findings suggested a significant association between hypermethylation of the MTHFR promoter region in RPL patients compared to healthy fertile women.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2513-2513
Author(s):  
Xiaochang Liu ◽  
Jiuxia Pang ◽  
Christopher Seiler ◽  
Ryan Kempen ◽  
Hao Liu ◽  
...  

Introduction: It is known that overexpression of DNA methyltransferases (e.g., DNMT1) is frequent and changes of DNA cytosine methylation (5mC) are a constant feature of cancers. DNA methylation inhibitors, such as 5-aza-2'-deoxycytidine (Dec), have been in clinics for patients with leukemia. It is classically believed that promoter hypomethylation coupled by reexpression of epigenetically-suppressed tumor suppressors is a core mechanism behind Dec-impaired leukemia cell growth. However, the fact that global DNA methylation profiling barely predicts Dec-response suggests a demethylation-independent mechanism of Dec-induced cell death. N6-methyladenine (m6A) has been identified recently as an abundant DNA modification in eukaryotes (Wu, Nature 2016;532:329). Importantly, m6A is extensively present in the human genome, and m6A abundance is associated with tumorigenesis (Xie, Cell 2018;71:306). Furthermore, the DNA m6A is dynamically modulated by the methyltransferases (i.e., METTL3, N6AMT1) and demethylases (i.e., ALKBH1), and changes in m6A predict gene expression (Wu, Nature 2016;532:329). Given a potential crosstalk between m6A and distinct epigenetic mechanisms (Yao, Nat. Commun 2017;8:1122), we hypothesized that the anticancer actions of Dec may partially result from changes in DNA m6A in leukemia cells. Methods: Protein expression of target genes was assessed by Western blotting. The levels of DNA cytosine methylation (5mC) and N6-methyladenine (m6A) were measured by dotblotting or liquid chromatography-mass spectrometry (LC-MS/MS). The cell viability and apoptosis were determined by the Cell Counting Kit 8 (CCK8) assays as well as the Annexin V/Propidium Iodide staining and flow cytometry. The peripheral blood mononuclear cells (PBMCs) of leukemia patients from Mayo Clinic were prepared by Ficoll-Hypaque gradient centrifugation. Results: To test our hypothesis, leukemia cells, Kasumi-1, MV4-11, K562 and KU812, were exposed to 2 µM Dec, a clinical achievable concentration, for 72 hours. As expected, Dec treatment led to a downregulation of DNMT1 and DNMT3a, a reduction of 5mC levels by dotblotting using anti-5mC antibody, a blockage of cell proliferation and a promotion of cell apoptosis. When genomic DNA was subjected to dotblotting using anti-m6A antibody, the results revealed a marked decrease of DNA m6A levels in all Dec-treated cells. Then genomic DNA from K562 and MV4-11 cells was enzymatically digested to 2'-deoxynucleosides. dA was quantified by HPLC-UV, while the amount of m6A was measured by isotope dilution HPLC-ESI-MS/MS using 15N labeled internal standard. The standard curves were generated using pure standards, from which the m6A/A ratio was calculated. In agreement with dotblotting results, Dec treatment significantly decreased DNA m6A abundance in both cell lines. Mechanistically, exposure to Dec led to a consistent increase of demethylase fat mass and obesity-associated protein (FTO), but not METTL3 nor ALKBH1 and ALKBH5. Further, knockdown of FTO increased DNA m6A, which was further confirmed by treatment with FTO inhibitors rhein and meclofenamic acid (MA). These data indicate that FTO may be responsible for Dec-induced m6A changes in leukemia cells. To investigate the clinical implications of DNA m6A, we obtained PBMCs from AML patients (n = 10), who received Dec therapy (20 mg/m2 daily for 5 days every 4 weeks) in Mayo Clinic. These PBMCs were further cultured for 48 hours, frozen and stored in 100% ethanol before DNA extraction. The results from dotblotting using anti-5mC or anti-m6A showed that a trend of decrease in both m6A and 5mC abundance is observed, and the pattern of changes in m6A and 5mC displays a positive correlation. Finally, exposure of leukemia cells to the combination of Dec (2 µM) with FTO inhibitor MA (50 µM) induced more cell apoptosis and greater inhibition on cell proliferation as compared to single agent in vitro, supporting FTO inhibitors as new therapeutic agents in leukemia. Conclusion: Our studies suggest that the FTO-DNA m6A axis may partially mediate the therapeutic outcomes of Dec in leukemia. Our findings provide a new mechanistic paradigm for the anticancer activities of Dec, and define the m6A methylation status in leukemia cells as a new pharmacodynamic marker for their response to Dec-based therapy, pointing to a novel treatment strategy for incorporating m6A modulators to enhance the therapeutic index of Dec. Disclosures Al-Kali: Astex Pharmaceuticals, Inc.: Research Funding.


2019 ◽  
Vol 33 (12) ◽  
pp. 1550-1561 ◽  
Author(s):  
Maria Vittoria Micioni Di Bonaventura ◽  
Mariangela Pucci ◽  
Maria Elena Giusepponi ◽  
Adele Romano ◽  
Catia Lambertucci ◽  
...  

Background:Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited.Methods and aims:Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2AAdenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes.Results:Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94.Conclusion:We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.


2020 ◽  
Vol 21 (4) ◽  
pp. 1547 ◽  
Author(s):  
Elisa Boldrin ◽  
Matteo Curtarello ◽  
Marco Dallan ◽  
Rita Alfieri ◽  
Stefano Realdon ◽  
...  

DNA methylation plays an important role in cancer development. Cancer cells exhibit two types of DNA methylation alteration: site-specific hypermethylation at promoter of oncosuppressor genes and global DNA hypomethylation. This study evaluated the methylation patterns of long interspersed nuclear element (LINE-1) sequences which, due to their relative abundance in the genome, are considered a good surrogate indicator of global DNA methylation. LINE-1 methylation status was investigated in the cell-free DNA (cfDNA) of 21 patients, 19 with esophageal adenocarcinoma (EADC) and 2 with Barrett’s esophagus (BE). The two BE patients and one EADC patient were also analyzed longitudinally. Methylation status was analyzed using restriction enzymes and DNA amplification. This methodology was chosen to avoid bisulfite conversion, which we considered inadequate for cfDNA analysis. Indeed, cfDNA is characterized by poor quality and low concentration, and bisulfite conversion might worsen these conditions. Results showed that hypomethylated LINE-1 sequences are present in EADC cfDNA. Furthermore, longitudinal studies in BE suggested a correlation between methylation status of LINE-1 sequences in cfDNA and progression to EADC. In conclusion, our study indicated the feasibility of our methodological approach to detect hypomethylation events in cfDNA from EADC patients, and suggests LINE-1 methylation analysis as a new possible molecular assay to integrate into patient monitoring.


Author(s):  
Paulina Inglot ◽  
Anna Lewinska ◽  
Leszek Potocki ◽  
Bernadetta Oklejewicz ◽  
Anna Tabecka-Lonczynska ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2951-2951
Author(s):  
Jun Fan ◽  
Asou Norio ◽  
Masao Matsuoka

Abstract DNA methylation plays an important role in the development and aging of mammalian cells, and its dysregulation has been frequently observed in cancer cells. The purpose of this study is to investigate the involvement of aberrant DNA methylation in B chronic lymphocytic leukemia (B-CLL) cells. We compared methylation status of B-CLL cells isolated from patients with that of normal CD19+ cells isolated from health donors by methylated CpG island amplification/representative difference analysis method. 5 hypermethylated and 27 hypomethylated DNA regions were identified in B-CLL sample. Among the 27 hypomethylated regions, 5 located on chromosome 9q34, 3 on 10q25-26 and 4 on 19q13. Methylation status was confirmed by sequencing using sodium bisulfite-treated DNA samples. By comparing DNA samples from same patients at different clinical stages, we found that lower methylation density in these regions is linked with disease progression. Expression of 15 genes surrounding hypomethylated regions was studied by RT-PCR. Expression of laminin beta3 gene and melanotransferrin gene was found to be upregulated in all B-CLL cell lines as well as lymphoma cell lines comparing with normal CD19+ peripheral blood mononuclear cells. B-cell CLL/lymphoma 11b gene showed increased expression in only 2 B-CLL cell lines. For other genes, no transcriptional change was found regardless of changed DNA methylation. This study showed the predominance of DNA hypomethylation in B-CLL cells compared with hypermethylation. Hypomethylated regions clustered in a limited number of chromosomes and methylation density appeared to be inversely correlated with disease progress. Figure Figure


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22151-e22151 ◽  
Author(s):  
Ernesto Soto Reyes Solis ◽  
Daniela Morales-Espinosa ◽  
David Cantu ◽  
Gabriela Alvarado-luna ◽  
Dan Green ◽  
...  

e22151 Background: Genetic and epigenetic alterations may promote the initiation or development of cancer. Global DNA hypomethylation and local hypermethylation have been observed, particularly in cell cycle control-associated genes, such as tumor suppressor genes like CTCF. The dissociation of CTCF is associated with hypermethylation of several promoters; its paralogue gene (BORIS) is normally expressed in testicular tissue during spermatogenesis. BORIS over-expression has been identified in multiple neoplasms such as melanoma, gynecological cancer, glioblastoma and – recently – breast cancer. The aim of this study was to characterize the methylation status of the promoter regions of CTCF and BORIS in samples from breast and ovarian cancer compared to non-neoplastic tissue, and correlate it to its expression. Methods: Tissue samples from breast and ovarian cancer, as well as healthy controls were analyzed by MS-PCR for CTCF and BORIS. BorismRNA expression was also analyzed by RT-PCR. Results: A total of 8 ovarian and 16 breast tumors, as well as 10 tumor-adjacent breast tissue samples were prospectively obtained. In non-neoplastic tissue, BORIS was found to be hypermethylated, while in ovarian tumors a loss of methylation was identified in 75% of the samples. The same phenomenon was observed in 68% of breast cancer samples when compared to non-neoplastic tissue. A correlation between loss of DNA methylation of the promoter and gene over-expression was found by RT-PCR, thus suggesting that methylation is an epigenetic phenomenon associated to the over-expression of the oncogene BORIS. The methylation analysis of CTCF did not show any differences between neoplastic and non-neoplastic tissue, suggesting that epigenetic changes mainly affect BORIS. Conclusions: Loss of methylation of the promoter region of BORIS is associated with the over-expression of the gene. No differences were found in the methylation status between healthy and neoplastic tissue for CTCF.


Sign in / Sign up

Export Citation Format

Share Document