scholarly journals Oral flora of stray dogs and cats in Algeria: Pasteurella and other zoonotic bacteria

2020 ◽  
Vol 13 (12) ◽  
pp. 2806-2814
Author(s):  
Kahina Razali ◽  
Rachid Kaidi ◽  
Amine Abdelli ◽  
Mohamed Nabil Menoueri ◽  
Khatima Ait-Oudhia

Background and Aim: Knowledge of potentially pathogenic bacteria presents in the oral cavity of dogs and cats may be helpful in determining appropriate treatment for infected bite wounds. About 120.000 people are exposed to dog and cat bites every year in Algeria, but little is known about the dog and cat oral flora causing bite wound complications. The purpose of this study was to identify potential zoonotic bacteria from oral cavity of dogs and cats and to determine their susceptibility to antibiotics to contribute to the treatment of bite wound infection. Materials and Methods: Oral swabs from 100 stray dogs and 100 stray cats were collected and cultured in several media: Chocolate agar, MacConkey agar, and Mannitol Salt Agar. Bacterial isolates were identified using several commercial kits of the analytical profile index and tested for antibiotic susceptibility by disk diffusion method. Results: Overall, 185/200 (92.5%) dogs and cats carried zoonotic bacteria in their mouths, of which 55.13% (102/185) had at least two bacterial pathogens. 374 pathogenic strains belonging to 15 genera were isolated: Eleven were Gram-negative (Proteus, Pasteurella, Escherichia, Moraxella, Klebsiella, Acinetobacter, Enterobacter, Pseudomonas, Aeromonas, and Neisseria Haemophilus) and four were Gram-positive (Staphylococcus, Streptococcus, and Corynebacterium, Bacillus). Fifty-one strains of Pasteurella were isolated from 44 carriers of Pasteurella (21 Pasteurella multocida, 21 Pasteurella pneumotropica, and 9 Pasteurella spp.). Pasteurella strains were tested for antibiotic resistance. Resistance to at least one drug was observed in 8 (15.68%) of Pasteurella isolates and two strains (3.92%) were found to be multidrug-resistant (to two or more drugs). Erythromycin, penicillin, and ampicillin were the antimicrobials to which the isolates showed greater resistance (7.84%, 5.88%, and 3.92%, respectively). Conclusion: To the best of our knowledge, this study is the first in Algeria to detect potential human pathogenic bacteria in the oral cavity of dogs and cats. It reveals that these animals have multiple zoonotic bacteria in their mouths including Pasteurella species, which may be multidrug-resistant.

Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 85 ◽  
Author(s):  
Hercules Sakkas ◽  
Petros Bozidis ◽  
Afrodite Ilia ◽  
George Mpekoulis ◽  
Chrissanthy Papadopoulou

During a six-month period (October 2017–March 2018), the prevalence and susceptibility of important pathogenic bacteria isolated from 12 hospital raw sewage samples in North Western Greece was investigated. The samples were analyzed for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum beta-lactamase (ESBL) producing Escherichia coli, carbapenemase-producing Klebsiella pneumoniae (CKP), and multidrug-resistant Pseudomonas aeruginosa. Antimicrobial susceptibility testing was performed using the agar diffusion method according to the recommendations of the Clinical and Laboratory Standards Institute. The diversity of carbapenemases harboring K. pneumoniae was examined by two phenotyping screening methods (modified Hodge test and combined disk test), a new immunochromatographic rapid assay (RESIST-4 O.K.N.V.) and a polymerase chain reaction (PCR). The results demonstrated the prevalence of MRSA, vancomycin-resistant Staphylococcus aureus (VRSA), VRE, and CKP in the examined hospital raw sewage samples. In addition, the aforementioned methods which are currently used in clinical laboratories for the rapid identification and detection of resistant bacteria and genes, performed sufficiently to provide reliable results in terms of accuracy and efficiency.


Author(s):  
Karolina Jeżak ◽  
Anna Kozajda

AbstractIntensive animal farming emits to the environment very high concentrations of bioaerosol, mainly composed of microorganisms, including antibiotics resistant strains, and their derivatives. Poland is a significant producer of poultry and swine in Europe; Ukraine is located in the immediate vicinity of Poland and the EU. Thus, the review focuses on the presence of potentially pathogenic and antimicrobial-resistant zoonotic bacteria and antimicrobial genes in the environment of farms and food of animal origin in Poland and Ukraine. Existing data confirms presence of these bacteria in the food animal origin chain environment in both countries. However, it is difficult to compare the scale of multidrug-resistant bacteria (e.g. MRSA, ESBL) dissemination in Poland and Ukraine with other EU countries due to lack of more extensive studies and large-scale monitoring in these two countries. A series of studies concerning resistance of pathogenic bacteria isolated from livestock environment have been published in Poland but usually on single farms with a very limited number of samples, and without a genotypic drug resistance marking. From Ukraine are available only few reports, but also disturbing. The risk of antibiotic-resistant bacteria transmission does not only concern animal farming, but also other facilities of animal origin food supply chains, especially slaughterhouses.


Author(s):  
Courage Kosi Setsoafia Saba ◽  
Akosua Bonsu Karikar ◽  
Enoch Yeleliere ◽  
Patrick Takyi ◽  
Stephen Wilson Kpordze

Microbial contamination of vended foods are of public health importance due to the potential of becoming a reservoir of foodborne pathogens and resistant strains of bacteria. This study looked at the presence of pathogenic bacteria in a popular Ready-To-Eat (RTE) traditional food, Fufu in Ghana. Sixty (60) Fufu samples were obtained from various food joints categorized as Opened, Semi-closed and Closed or Restaurants. Samples were processed and analyzed using standard bacteriological methods. The susceptibility profiles of the isolates were obtained by using the Kirby-Bauer disk diffusion method with the EUCAST guidelines with the five antibiotics. Prevalence of E. coli was 85% and Salmonella species was 68%. Microbial count of isolated E. coli ranged from 0 to 3×106 cfu/ml. There were no significant differences (p>0.05) among the different modes of operations. Fufu samples from Opened, Semi-closed and Closed joints were respectively contaminated with E. coli and Salmonella species as follows: 92%, 76%; 80%, 60% and 80%, 65%. The Salmonella species showed highest resistance to erythromycin (58.5%) and E. coli species were commonly resistant to Ceftazidime (88.2%) and Ceftriaxone (94.1%). All isolates were susceptible to nitrofurantoin. Multidrug resistance was detected among 27.5% of E. coli strains and 14.6% of Salmonella species. Fufu from the different eating joints in the Tamale Metropolis were substantially contaminated with multidrug resistant pathogens. The study recommends surveillance studies of resistant pathogens in foods, increased education and training of food vendors on sanitation, food handling and safety practices in the region.


Author(s):  
Md. Saroat Hossain ◽  
K. M. Mozaffor Hossain ◽  
Md. Mahbubul Alam Sarker ◽  
Sm. Ahasanul Hamid

Salmonella is one of the most common zoonotic bacteria that cause foodborne illness in humans. An investigation was conducted to determine the prevalence and antibiotic susceptibility patterns of Salmonella isolates from chicken eggs in the Naogaon district, Bangladesh. Salmonella was isolated from cultures on different selective-differential media and further identified by biochemical tests. Antibiogram study was done by the disk diffusion method. The overall prevalence of Salmonella was recorded as 7.78%, whereas 5.56% was on eggshell surfaces and 2.22% was in egg contents. The Salmonella prevalence was 8.33%, 13.33% and 1.67% in chicken eggs from layer farms, whole sellers and retailers, respectively. Salmonella isolates were found 50.0% to 85.71% sensitive to chloramphenicol, gentamycin, ciprofloxacin, and ceftriaxone. Resistance against gentamycin, chloramphenicol, and ampicillin was found significant ranging from 21.43% to 71.42%. The highest resistance was found in amoxicillin (92.86%). The present study proposes that chicken eggs are a potential reservoir of multidrug-resistant Salmonella. Antibiotic-resistant Salmonella will pose a problem to treat Salmonella infection in humans. Thus, the aim of this study is to assess the risk of Salmonella resistance in chicken eggs.


2021 ◽  
pp. e262
Author(s):  
Kelechi Edward ◽  
V.I. Ibekwe ◽  
E.S. Amadi ◽  
S.I. Umeh

Over the years, zoonotic bacteria of the genus Salmonella, have acquired antimicrobial resistance properties, with a wide variety of resistance genes and resistance-mediating mutations being identified. This study isolated and characterized multiple drug resistant Salmonella species isolated from abattoir wastewaters in Abia State, Nigeria. Seven hundred wastewater samples from three abattoirs: Aba (300), Ubakala (250) and Lokpa (150) samples were analyzed from 2016 to 2019. Standard microbiological procedures were followed in isolation and identification of the Salmonella spp isolates. The antibiotic susceptibility test was done using the Kirby Bauer disk diffusion method. The results showed moderate but significant prevalence of Salmonella spp in the three abattoir locations; 135(45.0%) from Aba, 108 (43.2%) from Ubakala and 74 (49.3%) from Lokpa. The antibiotic susceptibility pattern of the Salmonella spp isolates show that the organisms were highly susceptible to Ofloxacin (84.4% in Aba, 89.8% in Ubakala and 82.4% in Lokpa) and highly resistant to Ampicillin (97.0% in Aba, 91.7% in Ubakala and 98.6% in Lokpa). Most isolates recorded Multiple Antibiotic Resistance (MAR) index greater than (>0.2). This result emphasizes the urgent need for regulation in the use of antibiotics in man and animals and their subsequent disposal into the environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Noha Ahmed Abd Alfadil ◽  
Malik Suliman Mohamed ◽  
Manal M. Ali ◽  
El Amin Ibrahim El Nima

Background. Banknotes are one of the most exchangeable items in communities and always subject to contamination by pathogenic bacteria and hence could serve as vehicle for transmission of infectious diseases. This study was conducted to assess the prevalence of contamination by pathogenic bacteria in Sudanese banknotes, determine the susceptibility of the isolated organisms towards commonly used antibiotics, and detect some antibiotic resistance genes.Methods. This study was carried out using 135 samples of Sudanese banknotes of five different denominations (2, 5, 10, 20, and 50 Sudanese pounds), which were collected randomly from hospitals, food sellers, and transporters in all three districts of Khartoum, Bahri, and Omdurman. Bacterial prevalence was determined using culture-based techniques, and their sensitivity patterns were determined using the Kirby–Bauer disk diffusion method. Genotypic identification was carried out using PCR and 16S rDNA sequencing. Antibiotic resistance genes of some isolates were detected using PCR technique.Results. All Sudanese banknotes were found to be contaminated with pathogenic bacteria.Klebsiella pneumoniaewas found to be the most frequent isolate (23%), whereasBacillus mycoides(15%) was the most abundant Gram-positive isolate. There was a significant relationship between the number of isolates and the banknote denomination withpvalue <0.05 (the lower denomination showed higher contamination level). Our study has isolated bacteria that are resistant to penicillins and cephalosporins. Multidrug-resistant strains harboring resistant genes (mecA,blaCTX-M, andblaTEM) were also detected.Conclusion. All studied Sudanese banknotes were contaminated with pathogenic bacteria, including multidrug-resistant strains, and may play a significant role in the transmission of bacterial infections.


2020 ◽  
Vol 23 (3) ◽  
pp. 89-95
Author(s):  
Citra Hardiyanti ◽  
Khairullinas Khairullinas ◽  
Jeky Sasemar Lumban ◽  
Titania Tjandrawati Nugroho ◽  
Yuana Nurulita

An antibiotic-resistant and multidrug-resistant (MDR) issue open the role of researchers to continue to search for natural potential as a source of new antimicrobials. One of the potential fungi isolates that can produce antimicrobial active compounds from Indonesian tropical peat soils is Penicillium sp. LBKURCC34. In this study, the production of antimicrobial compounds from local isolates was carried out by batch fermentation method in liquid media with the addition of biotic elicitors to increase the extraction activity and yield. This study aims to optimize the results based on the time the elicitor is added. Staphylococcus aureus was used as a biotic elicitor, which was added on days 2, 3, and 4 in the production of antibiotics by fermentation incubation of 6-14 days. The antibiotic production media was extracted with ethyl acetate and evaporated. The antimicrobial test was carried out by the disk diffusion method against pathogenic bacteria Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Staphylococcus epidermidis using three crude extract contents (19; 38; and 57 µg/disc). Amoxicillin® was used as a positive control (10 µL/disc). The results showed that the addition of S. aureus biotic elicitor extended the log phase growth of the fungus Penicillium sp. LBKURCC34. The optimum condition of production was obtained by adding initiator treatment on the 3rd day for 14 days incubation with the highest yield and could inhibit the growth of all pathogenic microbes.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1372
Author(s):  
Ilona Rowińska ◽  
Adrianna Szyperska-Ślaska ◽  
Piotr Zariczny ◽  
Robert Pasławski ◽  
Karol Kramkowski ◽  
...  

The diet is related to the diversity of bacteria in the oral cavity, and the less diverse microbiota of the oral cavity may favor the growth of pathogenic bacteria of all bacterial complexes. Literature data indicate that disturbances in the balance of the bacterial flora of the oral cavity seem to contribute to both oral diseases, including periodontitis, and systemic diseases. If left untreated, periodontitis can damage the gums and alveolar bones. Improper modern eating habits have an impact on the oral microbiome and the gut microbiome, which increase the risk of several chronic diseases, including inflammatory bowel disease, obesity, type 2 diabetes, cardiovascular disease and cancer. The subject of our consideration is the influence of the traditional diet on the formation of oxidative stress and inflammation caused by bacterial biofilm in the oral cavity. Through dental, biomedical and laboratory studies, we wanted to investigate the effect of individual nutrients contained in specific diets on the induction of oxidative stress inducing inflammation of the soft tissues in the oral cavity in the presence of residual supra- and subgingival biofilm. In our research we used different types of diets marked as W, T, B, F and noninvasively collected biological material in the form of bacterial inoculum from volunteers. The analyzed material was grown on complete and selective media against specific strains of all bacterial complexes. Additionally, the zones of growth inhibition were analyzed based on the disc diffusion method. The research was supplemented with dental and periodontological indicators. The research was supplemented by the application of molecular biology methods related to bacterial DNA isolation, PCR reactions and sequencing. Such selected methods constitute an ideal screening test for the analysis of oral bacterial microbiota. The obtained results suggest that certain types of diet can be an effective prophylaxis in the treatment of civilization diseases such as inflammation of the oral cavity along with periodontal tissues and gingival pockets.


Author(s):  
Deresse Daka ◽  
◽  
Hunachew Beyene ◽  
Simachew Dires ◽  

Background: Aquatic environments close to cities are frequently used as sources for water and at the same time overloaded with a variety of pollutants either through direct or indirect discharges of untreated wastes and sewage. This condition is also worsened by the indiscriminate disposal of untreated wastes and sewage vigorously into used water. Sewage contaminated waters are known to carry microorganisms, some of which are pathogenic to humans. Aim: The aim of this study was to assess the extent of temporal and spatial levels of microbial pollution and sources of pollution in Lake Hawassa. Method: A cross-sectional study was conducted at Lake Hawassa, which was sampled twice during 2017. A total of 26 samples of lake water were collected from 14 stations using a boat. Entry points of incoming streams, waste receiving sites, and areas upstream of anthropogenic impact, recreational and bathing sites were considered. Microbiological characterisation was performed using selective media and basic biochemical tests. Antibiotic sensitivity was tested with different antibiotics using the Kirby-Bauer agar disk diffusion method. Result: All samples were positive for pathogenic bacteria, including Gram-positive and Gram-negative bacteria. Enterobacteriaceae were the most common bacteria identified from the samples, including Escherichia coli, Salmonella spp, Shigella spp, Proteus spp and Gram-positive bacteria, such as Staphylococcus aureus. The predominant bacteria found in the samples include E. coli, which constituted 22/26 (84.6%) of the total samples, followed by Salmonella and Shigella spp. All bacterial isolates were resistant to penicillin and ampicillin. The Salmonella spp were sensitive only to norfloxacin and gentamicin. Conclusion: A spatial variation with the occurrence of bacterial isolates has been observed. High concentrations and many different species were found in areas of human activities and in areas receiving direct pollutants from the city. This study revealed that multidrug resistant (MDR) pathogenic bacteria are found in Lake Hawassa. There is a possibility of outbreak of diseases associated with the isolated antibiotic-resistant pathogens for which the antibiotic resistance genes are transportable within aquatic bacterial communities. We recommend that the city administration take care of the municipal wastewater or effluents from healthcare facilities that enter the lake. It is also recommended that the government take steps to control anthropogenic activities near the water body.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Laila Chaoui ◽  
RajaaAit Mhand ◽  
Fouad Mellouki ◽  
Naima Rhallabi

Nosocomial infections (NIs) are known worldwide and remain a major problem despite scientific and technical advances in the field of health. The severity of the infection depends on the characteristics of the microorganisms involved and the high frequency of resistant pathogens in the hospital environment. The aim of this study is to determine the distribution of pathogenic bacteria (and their resistance to antibiotics) that spread on hospital surfaces, more specifically, on those of various departments in the Provincial Hospital Center (PHC) of Mohammedia, Morocco. A cross-sectional study was conducted from March 2017 to April 2018. Samples were collected by swabbing the hospital surfaces, and the isolated bacteria were checked for their susceptibility to antibiotics by the Kirby–Bauer disk diffusion method following the standards of the Clinical and Laboratory Standards Institute (CLSI). Among 200 swab samples, 176 (88%) showed bacterial growth. Gram-negative isolates were predominant at 51.5% (101/196), while the Gram-positives were at 48.5% (95/196). The main isolates are Enterobacteria weighted at 31.6% (62/196), Staphylococcus aureus reaching 24% (47/196), Pseudomonas aeruginosa at 9.2% (18/196), and Acinetobacter spp. with 3.3% (6/196). Moreover, the antimicrobial susceptibility profile of the isolates showed that about 31.7% (32/101) of the Gram-negative isolates were found to be MDR. This resistance is also high among isolates of S. aureus of which 44.7% (20/47) were methicillin-resistant Staphylococcus aureus (MRSA). Contamination of hospital surfaces by MDR bacteria is a real danger to public health. The concept of environmental bacterial reservoir is a reality that requires strict compliance with current guidelines and recommendations for hand hygiene, cleaning, and disinfection of surfaces in hospitals.


Sign in / Sign up

Export Citation Format

Share Document