scholarly journals The Streptomycin-Sulfadiazine-Tetracycline Antimicrobial Resistance Element of Calf-Adapted Escherichia coli Is Widely Distributed among Isolates from Washington State Cattle

2007 ◽  
Vol 74 (2) ◽  
pp. 391-395 ◽  
Author(s):  
Artashes R. Khachatryan ◽  
Thomas E. Besser ◽  
Douglas R. Call

ABSTRACT Association of specific antimicrobial resistance patterns with unrelated selective traits has long been implicated in the maintenance of antimicrobial resistance in a population. Previously we demonstrated that Escherichia coli strains with a specific resistance pattern (resistant to streptomycin, sulfadiazine, and tetracycline [SSuT]) have a selective advantage in dairy calf intestinal environments and in the presence of a milk supplement commonly fed to the calves. In the present study we identified the sequence of the genetic element that confers the SSuT phenotype and show that this element is present in a genetically diverse group of E. coli isolates, as assessed by macrorestriction digestion and pulsed-field gel electrophoresis. This element was also found in E. coli isolates from 18 different cattle farms in Washington State. Using in vitro competition experiments we further demonstrated that SSuT strains from 17 of 18 farms were able to outcompete pansusceptible strains. In a separate set of experiments, we were able to transfer the antimicrobial resistance phenotype by electroporation to a laboratory strain of E. coli (DH10B), making that new strain more competitive during in vitro competition with the parental DH10B strain. These data indicate that a relatively large genetic element conferring the SSuT phenotype is widely distributed in E. coli from cattle in Washington State. Furthermore, our results indicate that this element is responsible for maintenance of these traits owing to linkage to genetic traits that confer a selective advantage in the intestinal lumens of dairy calves.

2020 ◽  
Vol 13 (2) ◽  
pp. 360-363
Author(s):  
Shikha Tamta ◽  
Obli Rajendran Vinodh Kumar ◽  
Shiv Varan Singh ◽  
Bommenahalli Siddaramiah Pruthvishree ◽  
Ravichandran Karthikeyan ◽  
...  

Background and Aim: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli are gradually increasing worldwide and carry a serious public threat. This study aimed to determine the antimicrobial resistance pattern of ESBL-producing E. coli isolated from fecal samples of piglets and pig farm workers. Materials and Methods: Fecal samples from <3-month-old piglets (n=156) and farm workers (n=21) were processed for the isolation of ESBL-producing E. coli in MacConkey agar added with 1 μg/mL of cefotaxime. E. coli (piglets=124; farm workers=21) were tested for ESBL production by combined disk method and ESBL E-strip test. Each of the ESBL-positive isolate was subjected to antibiotic susceptibility testing. The ESBL-producing E. coli were further processed for genotypic confirmation to CTX-M gene. Results: A total of 55 (44.4%, 55/124) and nine (42.9%, 9/21) ESBL-producing E. coli were isolated from piglets and farm workers, respectively. Antibiotic susceptibility testing of the ESBL-positive E. coli isolates from piglets and farm workers showed 100% resistance to ceftazidime, cefotaxime, cefotaxime/clavulanic acid, ceftazidime/clavulanic acid, and cefpodoxime. A proportion of 100% (55/55) and 88.9% (8/9) ESBL-positive E. coli were multidrug resistance (MDR) in piglets and farm workers, respectively. On genotypic screening of the ESBL E. coli isolated from piglets (n=55), 15 were positive for the blaCTX-M gene and of the nine ESBL E. coli from farm workers, none were positive for the blaCTX-M gene. Conclusion: Although there was no significant difference in isolation of ESBL-producing E. coli between piglets and farm workers, the ESBL-positive E. coli from piglets showed relatively higher MDR than farm workers.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 420 ◽  
Author(s):  
Mst. Sonia Parvin ◽  
Sudipta Talukder ◽  
Md. Yamin Ali ◽  
Emdadul Haque Chowdhury ◽  
Md. Tanvir Rahman ◽  
...  

Escherichia coli is known as one of the most important foodborne pathogens in humans, and contaminated chicken meat is an important source of foodborne infection with this bacterium. The occurrence of extended-spectrum β-lactamase (ESBL)-producing E. coli (ESBL-Ec), in particular, in chicken meat is considered a global health problem. This study aimed to determine the magnitude of E. coli, with special emphasis on ESBL-Ec, along with their phenotypic antimicrobial resistance pattern in frozen chicken meat. The study also focused on the determination of ESBL-encoding genes in E. coli. A total of 113 frozen chicken meat samples were purchased from 40 outlets of nine branded supershops in five megacities in Bangladesh. Isolation and identification of E. coli were done based on cultural and biochemical properties, as well as PCR assay. The resistance pattern was determined by the disc diffusion method. ESBL-encoding genes were determined by multiplex PCR. The results showed that 76.1% of samples were positive for E. coli, of which 86% were ESBL producers. All the isolates were multidrug-resistant (MDR). Resistance to 9–11 and 12–13 antimicrobial classes was observed in 38.4% and 17.4% isolates, respectively, while only 11.6% were resistant to 3–5 classes. Possible extensive drug resistance (pXDR) was found in 2.3% of isolates. High single resistance was observed for oxytetracycline (93%) and amoxicillin (91.9%), followed by ampicillin (89.5%), trimethoprim–sulfamethoxazole, and pefloxacin (88.4%), and tetracycline (84.9%). Most importantly, 89.6% of isolates were resistant to carbapenems. All the isolates were positive for the blaTEM gene. However, the blaSHV and blaCTX-M-2 genes were identified in two ESBL-non producer isolates. None of the isolates carried the blaCTX-M-1 gene. This study provided evidence of the existence of MDR and pXDR ESBL-Ec in frozen chicken meat in Bangladesh, which may pose a risk to human health if the meat is not properly cooked or pickled raw only. This emphasizes the importance of the implementation of good slaughtering and processing practices by the processors.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Gang Liu ◽  
Laidi Ding ◽  
Bo Han ◽  
Sofie Piepers ◽  
S. Ali Naqvi ◽  
...  

Escherichia coliis a major udder pathogen causing clinical mastitis in dairy cattle and its heat stable endotoxin in powdered infant formula milk is a potential risk factor in neonatal infections. Cephalosporins are frequently used for treatment of mastitis caused by mastitis; however, use of these antimicrobials may induce antimicrobial resistance inE. coli. The objective of this study was to explore thein vitroeffect of subminimum inhibitory concentrations (sub-MIC) of cefalotin (CF) and ceftazidime (CAZ) on the morphology, antimicrobial resistance, and endotoxin releasing characteristics of 3E. coliisolates recovered from bovine clinical mastitis. The parentE. coliisolates, which were susceptible to CF and CAZ, were exposed to CF or CAZ separately at sub-MIC levels to produce 9 generations of induced isolates. Colonies of the CAZ-induced isolates from all 3 parentE. coliwere smaller on blood agar and the bacteria became filamentous, whereas the CF-induced isolates did not demonstrate prominent morphological changes. After induction by CF or CAZ, many induced isolates showed resistance to cefoxitin, CAZ, CF, kanamycin, ampicillin, and amoxicillin/clavulanic acid while their parent isolates were susceptible to these antimicrobials. Notably, 5 CAZ-induced isolates from the same parent isolate were found to produce extended-spectrum beta-lactamase (ESBL) though none of the tested ESBL related genes could be detected. All CAZ-induced isolates released more endotoxin with a higher release rate, whereas endotoxin release of CF-inducedE. coliisolates was not different from parent isolates. The exposure of cephalosporins at sub-MIC levels induced resistantEscherichia coli.We inferred that cephalosporins, especially CAZ, should be used prudently for treatment of clinicalE. colimastitis.


2020 ◽  
Vol 8 (6) ◽  
pp. 827 ◽  
Author(s):  
Ana Carolina M. Santos ◽  
Rosa M. Silva ◽  
Tiago B. Valiatti ◽  
Fernanda F. Santos ◽  
José F. Santos-Neto ◽  
...  

Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.


2011 ◽  
Vol 60 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Erick Amaya ◽  
Daniel Reyes ◽  
Samuel Vilchez ◽  
Margarita Paniagua ◽  
Roland Möllby ◽  
...  

In developing countries, diarrhoeal diseases are one of the major causes of death in children under 5 years of age. It is known that diarrhoeagenic Escherichia coli (DEC) is an important aetiological agent of infantile diarrhoea in Nicaragua. However, there are no recent studies on antimicrobial resistance among intestinal E. coli isolates in Nicaraguan children. The aim of the present study was to determine the antimicrobial resistance pattern in a collection of 727 intestinal E. coli isolates from the faeces of children in León, Nicaragua, between March 2005 and September 2006. All samples had been screened previously for the presence of DEC by multiplex PCR. Three hundred and ninety-five non-DEC isolates (270 from children with diarrhoea and 125 from children without diarrhoea) and 332 DEC isolates (241 from children with diarrhoea and 91 from children without diarrhoea) were analysed in this study. In general, antimicrobial resistance among the 727 intestinal E. coli isolates was high for ampicillin (60 %), trimethoprim–sulfamethoxazole (64 %) and chloramphenicol (11 %). Among individual E. coli categories, enteroaggregative E. coli isolates from children with and without diarrhoea exhibited significantly higher levels of resistance (P<0.05) to ampicillin and trimethoprim–sulfamethoxazole compared to the other E. coli categories. Resistance to ceftazidime and/or ceftriaxone and a pattern of multi-resistance was related to CTX-M-5- or CTX-M-15-producing E. coli isolates. The results suggest that E. coli isolates from Nicaraguan children have not reached the high levels of resistance to the most common antibiotics used for diarrhoea treatment as in other countries.


2012 ◽  
Vol 56 (4) ◽  
pp. 2181-2183 ◽  
Author(s):  
Guillermo V. Sanchez ◽  
Ronald N. Master ◽  
James A. Karlowsky ◽  
Jose M. Bordon

ABSTRACTThis study examinesin vitroantimicrobial resistance data fromEscherichia coliisolates obtained from urine samples of U.S. outpatients between 2000 and 2010 using The Surveillance Network (TSN). Antimicrobial susceptibility results (n= 12,253,679) showed the greatest increases inE. coliresistance from 2000 to 2010 for ciprofloxacin (3% to 17.1%) and trimethoprim-sulfamethoxazole (TMP-SMX) (17.9% to 24.2%), whereas nitrofurantoin (0.8% to 1.6%) and ceftriaxone (0.2% to 2.3%) showed minimal change. From 2000 to 2010, the antimicrobial resistance of urinaryE. coliisolates to ciprofloxacin and TMP-SMX among outpatients increased substantially.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Amirhossein Yousefi ◽  
Saam Torkan

Resistant uropathogenic Escherichia coli is the most common cause of urinary tract infections in dogs. The present research was done to study the prevalence rate and antimicrobial resistance properties of UPEC strains isolated from healthy dogs and those which suffered from UTIs. Four-hundred and fifty urine samples were collected and cultured. E. coli-positive strains were subjected to disk diffusion and PCR methods. Two-hundred out of 450 urine samples (44.4%) were positive for E. coli. Prevalence of E. coli in healthy and infected dogs was 28% and 65%, respectively. Female had the higher prevalence of E. coli (P=0.039). Marked seasonality was also observed (P=0.024). UPEC strains had the highest levels of resistance against gentamicin (95%), ampicillin (85%), amikacin (70%), amoxicillin (65%), and sulfamethoxazole-trimethoprim (65%). We found that 21.50% of UPEC strains had simultaneously resistance against more than 10 antibiotics. Aac(3)-IV (77%), CITM (52.5%), tetA (46.5%), and sul1 (40%) were the most commonly detected antibiotic resistance genes. Findings showed considerable levels of antimicrobial resistance among UPEC strains of Iranian dogs. Rapid identification of infected dogs and their treatment based on the results of disk diffusion can control the risk of UPEC strains.


2020 ◽  
Vol 10 (1) ◽  
pp. 48-55 ◽  
Author(s):  
Yerabham Praveenkumarreddy ◽  
Masato Akiba ◽  
Keerthi Siri Guruge ◽  
Keshava Balakrishna ◽  
Kalwaje Eshwara Vandana ◽  
...  

Abstract Antibiotics received by sewage treatment plants may be the causative factor in spreading antibiotic resistance bacteria in the aquatic environment. The current study investigates the distribution of antimicrobial-resistant Escherichia coli (E. coli) in four sewage treatment plants (STPs) in South India receiving hospital and domestic wastewater in different proportions. A total of 221 E. coli isolates were checked for antimicrobial resistance against 16 antimicrobials. Among the antimicrobials tested, ampicillin (AMP) and cefazolin (CFZ) showed resistance between 20% and 90%, nalidixic acid (NAL) and ciprofloxacin (CIP) showed resistance between 15% and 75% and chloramphenicol (CHL) showed resistance between 2% and 20%. Based on the observations, there is no significant difference between the wastewater inlet and outlet, suggesting that treatment process was not effective in reducing the resistance. In conclusion, the trends of antimicrobial resistance pattern show that the levels of resistance were slightly higher in hospital wastewater than domestic wastewater. This article has been made Open Access thanks to the generous support of a global network of libraries as part of the Knowledge Unlatched Select initiative.


1982 ◽  
Vol 88 (2) ◽  
pp. 275-284 ◽  
Author(s):  
Vincenzo Falbo ◽  
Alfredo Caprioli ◽  
Francesca Mondello ◽  
Maria Luisa Cacace ◽  
Stefania Luzi ◽  
...  

SummaryThe susceptibility to antimicrobial agents of 569 salmonella isolates collected in 1977–8 from patients in hospitals in Rome was tested. Fifty-nine per cent of all isolates were resistant to one or more antimicrobials. Resistance was most common to sulphathiazole, tetracycline, streptomycin, whereas colistin, gentamicin, tobramycin, trimethoprim-sulphamethoxazole and nalidixic acid were the most activein vitro.Multiple resistance was most frequently found in strains ofSalmonella wienandS. typhimurium(94% and 38% respectively).A significant change in the resistance pattern ofS. wienwas observed between 1977 and 1978, with a significant increase of susceptibility to some antimicrobials in 1978.Twenty-one R-plasmids transmissible toE. coliK12 were derived from 46 resistant strains ofS. typhimurum.


2016 ◽  
Vol 2 (7) ◽  
Author(s):  
M. Nadeem Ahmed ◽  
Debby Vannoy ◽  
Ann Frederick ◽  
Xuan Bi

<p><strong><span style="font-size: medium;">Objective:</span></strong><span style="font-size: medium;"> To evaluate multi-antimicrobial resistance pattern of <em>Escherichia coli</em></span><span style="font-size: medium;"> (</span><em><span style="font-size: medium;">E. coli</span></em><span style="font-size: medium;">) urinary isolates and the risk factors associated with commonly prescribed antibiotics in emergency department and primary care clinics.</span><span style="font-size: medium;">    </span></p><p><strong><span style="font-size: medium;">Method</span></strong><span style="font-size: medium;"> This is a cross-sectional study of patients 18 to 65 years of age reported to have <em>E. coli</em></span><span style="font-size: medium;"> positive urinary tract infections (UTIs) whose medical and laboratory records were systematically reviewed.</span><span style="font-size: medium;">   </span></p><p><strong><span style="font-size: medium;">Results: </span></strong><span style="font-size: medium;">Overall, 37.7% <em>E. coli</em></span><span style="font-size: medium;"> urinary isolates were resistant to ampicillin, 18.3% to trimethoprim/sulfamethoxazole (TMP/SMX), and 7.8% to ciprofloxacin. About 21% isolates were resistant to two or more antibiotics. Ciprofloxacin-resistant </span><em><span style="font-size: medium;">E. coli</span></em><span style="font-size: medium;"> isolates from outpatient urine sample were frequently resistant to ampicillin (81.5%), and TMP/SMX (58.2%). The concurrent resistance rate of ciprofloxacin was about 8 times more frequent (24.8% vs. 3.1%) than nitrofurantoin among TMP/SMX-resistant </span><em><span style="font-size: medium;">E. coli</span></em><span style="font-size: medium;"> urinary isolates. Patients with histories of genitourinary abnormalities were 1.59 times (</span><em><span style="font-size: medium;">CI 1.27-1.98</span></em><span style="font-size: medium;">) more likely have </span><em><span style="font-size: medium;">E. coli</span></em><span style="font-size: medium;"> isolates resistant to TMP/SMX, and 2.35 times more likely (</span><em><span style="font-size: medium;">CI 1.79-3.09</span></em><span style="font-size: medium;">) to ciprofloxacin. Diabetic patients were at increased risk for resistance to TMP/SMX (</span><em><span style="font-size: medium;">OR 1.37,</span></em><em><span style="font-size: medium;">CI 1.14-1.65</span></em><span style="font-size: medium;">) and ciprofloxacin (</span><em><span style="font-size: medium;">OR 2.51,</span></em><em><span style="font-size: medium;">CI 2.00-3.16</span></em><span style="font-size: medium;">). Obesity is significantly associated with ciprofloxacin resistance (</span><em><span style="font-size: medium;">OR 1.68,</span></em><em><span style="font-size: medium;">CI 1.34-2.09</span></em><span style="font-size: medium;">). TMP/SMX and ciprofloxacin resistance rate increased gradually with the number of previous UTIs, hospitalizations, and antibiotic prescriptions.</span><span style="font-size: medium;">  </span></p><p><strong><span style="font-size: medium;">Conclusions: </span></strong><span style="font-size: medium;">Ciprofloxacin resistant isolates of <em>E. coli</em></span><span style="font-size: medium;"> from urine were frequently multi-drug resistant and TMP/SMX can induce ciprofloxacin resistant. In addition to demographic factors, history of genitourinary abnormalities, diabetes, obesity, number of hospitalizations, previous diagnosis of UTIs, antibiotic prescriptions in previous 6 months are risk factors for antimicrobial resistance. </span></p><p><span style="font-size: medium;"> </span></p>


Sign in / Sign up

Export Citation Format

Share Document