scholarly journals Mechanical and Optical Properties of Thin Film Titanium Nitride (TiN) Resulting from Deposition DC Sputtering

Author(s):  
Andre Yoan Setyanjana ◽  
Asih Melati ◽  
Ihwanul Aziz

Titanium nitride (TiN) thin film was successfully grown on the surface of stainless steel 304 (SS 304) and preparate glass using the direct current sputtering method. The fabrication was done at high voltage 2.5 kV, sputtering current 40 mA, and deposition time 1 hour. The characterization was carried out using a Micro Hardness Tester and UV-Vis Spectrophotometer. Based on mechanical properties, the hardness results of deposition on SS 304 obtained vickers hardness value of 153.59 HVN and thin film thickness was preparate glass 172.61 nm. Whereas optical properties, from testing the transmittance of thin films TiN measured at a wavelength range of 300 nm - 800 nm, the thin film TiN optical gap energy is 3.51 eV.


Optik ◽  
2019 ◽  
Vol 199 ◽  
pp. 163517 ◽  
Author(s):  
Mahsa Etminan ◽  
Nooshin. S. Hosseini ◽  
Narges Ajamgard ◽  
Ataalah Koohian ◽  
Mehdi Ranjbar


2014 ◽  
Vol 979 ◽  
pp. 248-250 ◽  
Author(s):  
Thanat Srichaiyaperk ◽  
Kamon Aiempanakit ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Chanunthorn Chananonnawathorn ◽  
...  

Tungsten trioxide (WO3) thin films were prepared by a DC reactive magnetron sputtering technique. The thin film fabrication process used tungsten (99.995%) as the sputtering target, the mixture of argon and oxygen as sputtering and reactive gases, and silicon (100) and glass slides as the substrates. The effects of annealing temperature in the range of 200-400°C on physical and optical properties of the WO3 thin films were investigated. The nanostructures and morphologies of these films were characterized by grazing-incident X-ray diffraction (GIXRD) and field-emission scanning electron microscopy (FE-SEM). The optical properties were analyzed by variable-angle spectroscopic ellipsometry (VASE) and spectrophotometer. From the XRD results, the as-deposited and annealed WO3 thin films up to 300°C were all amorphous. Only the WO3 thin film annealed at 400°C exhibited a polycrystalline monoclinic phase. The FE-SEM cross-sections and surface topologies demonstrated nearly identical thin-film thickness and physical grain sizes. The SE analyses showed that the thin films were all homogeneous dense layers with additional surface roughness. With the annealing treatment, the thin film thickness was slightly decreased. The SE physical model was best optimized with the Cauchy optical model. The results showed that the refractive index at 550 nm was increased from 2.17 to 2.23 with the increased annealing temperature. The results from the spectrophotometer confirmed that the optical spectra for the WO3 thin films were decreased. This study demonstrated that, the thin film annealed at 400°C exhibited the slightly lower transparency, which corresponded to the results from the GIXRD and SE analyses.





2013 ◽  
Vol 832 ◽  
pp. 460-465 ◽  
Author(s):  
Nor Diyana Md Sin ◽  
M.H. Mamat ◽  
M. Rusop

The effect of deposition time on properties of ZnO nanostructured thin film was investigated. The ZnO thin films were deposited at various times from 15~75 minutes. The ZnO thin film at 60 min deposition time shows the highest current density and high conductivity with 2.15x10-2 Scm-1. The optical properties of ZnO thin films show high transmittance with >80% at 380 nm to 1200 nm. The thickness of ZnO thin film increases linearly with deposition time. The size of ZnO thin films increase as the deposition time increase. Based from fesem images, the ZnO nanocolumnar structure was formed at 15 to 60 minutes deposition time while at 75 minutes the sample formed nanoflakes structure.



2013 ◽  
Vol 701 ◽  
pp. 172-175 ◽  
Author(s):  
Marmeezee Mohd Yusoff ◽  
Mohd Hanafi Ani ◽  
Suryanto

ZnO films were deposited on Cu substrate using electrodeposition and thermal oxidation method. The effect of deposited thin film thickness varied with deposition time was discussed. Synthesized ZnO films were characterized using XRD, FE-SEM and electrical measurement. The results from electrical measurement showed the deposited ZnO exhibits pinched hysteresis IV curves. The synthesized ZnO shows a potential applications and options in production of a non-complex and low cost memristor.



2014 ◽  
Vol 979 ◽  
pp. 244-247 ◽  
Author(s):  
Chanunthorn Chananonnawathorn ◽  
Narathon Khemasiri ◽  
Thanat Srichaiyaperk ◽  
Benjarong Samransuksamer ◽  
Mati Horprathum ◽  
...  

Tantalum oxide (Ta2O5) thin films were prepared, at different deposition time, by a DC reactive magnetron sputtering. During the deposition, a high-quality tantalum target was sputtered under argon and oxygen ambience on to silicon (100) and glass substrates. The prepared thin films were systematically characterized for both physical and optical properties based on spectroscopic ellipsometry (SE), and consequently confirmed by several methods. With the SE physical models, we could determine the thin film thickness as well as their inhomogeneity. The films thickness results were directly confirmed by field-emission scanning electron microscopy (FE-SEM) used to observe cross-sections, and surface profiler used to measure the physical thickness of the films. With the SE optical models, we applied both the Cauchy and Tauc-Lorentz dispersions in order to obtain the optical constants, to be directly compared with those from the Swanepoel method (SM). Our result showed that from the SE analyses, the SE physical model was obtained as the multi-layer configurations. The obtained Ta2O5 thin film thickness was closely related with the measured result from the FE-SEM cross-sectional micrographs and the surface profiler. For the optical characteristic, the double layer physical model was best optimized with the Tauc Lorentz dispersion model for the most accurate results. In comparison, the SM technique also demonstrated a capability to determine both the film thickness and its refractive index only from some samples. Therefore, this study proved that the SE technique successfully and accurately determine both the physical and optical properties of the Ta2O5 thin films.



Open Physics ◽  
2008 ◽  
Vol 6 (1) ◽  
Author(s):  
Arghya Banerjee ◽  
Kalyan Chattopadhyay

AbstractWe report on the fabrication of all transparent heterojunction thin film diodes of the form glass/n-ZnO: Al/p-CuAlO2 produced by a combinatorial chemical and physical technique and on a study of their electro-optical properties. The n-ZnO: Al layer was deposited by a sol-gel-dip-coating process whereas the p-CuAlO2 layer was deposited by direct current sputtering techniques. The diode structure, with a total thickness of 1100 nm showed around 60% transmittance in the visible region. The current-voltage characteristics of the device showed a rectifying nature, with a low turn-on voltage around 0.8 V, having a rectification ratio > 50 at ± 2 V. The low turn-on voltage and moderate visible transmittance of the transparent diode indicate its potential application in the field of “Transparent” or “Invisible Electronics”.





2015 ◽  
Vol 11 (2) ◽  
pp. 3017-3022
Author(s):  
Gurban Akhmedov

Results of researches show, that film p-n the structures received by a method of discrete thermal evaporation in a uniform work cycle, are suitable for use in low-voltage devices.  As a result of work are received p-n heterojunctions in thin-film execution, described by high values of differential resistance. Show that, thermo endurance - T0 maybe using as characteristic of thermo endurance of optic materials. If heating flow, destruction temperature and internal surface temperature is measured during test, it is possible to determine value T0 and other necessity characteristics. As a result of the taking test was lead to comparison evaluation of considered materials. Working range of heating flow and up level heating embark have been determined.



Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.



Sign in / Sign up

Export Citation Format

Share Document