scholarly journals Photomicrogrph Atlas of Wood Pellet Components

2021 ◽  
Vol 3 ◽  
Author(s):  
Agnieszka Drobniak

Concerns about climate change, energy security, and the diversification of energy supplies have made renewable resources increasingly more attractive and important sources of energy. As interest grows, bioenergy (energy from bio-based sources) is becoming more environmentally friendly and economically viable and has started to play a more prominent role in the global energy mix. In this changing market, wood pellets have emerged as a sustainable source of power with the potential to become a mainstream fuel in the future energy market. Pellets are currently the most economical way of converting biomass into fuel, and they are a fast-growing component of the energy sector. Pellets can be made from various types of biomass including industrial waste and co-products, food waste, agricultural residues, and virgin lumber, which are compressed under high pressure. Among these, wood pellets are the most common, and they generally are made from raw trees, wood shavings, compacted sawdust, industrial wastes from the milling of lumber, manufacture of wood products and furniture, and construction. The wood pellets available on the market are sold as fuel (heating and grilling) or as absorbents for animal bedding. But while the wood pellets are a fast-growing component of the energy sector and important tool in fight with global warming, it is important to understand influence of wood pellet quality on combustion emissions, and how their usage impacts human health and environment. Thanks to wood pellet industry efforts, especially in the North America and European Union, many of the wood pellets follow rigorous production procedures, and certification. However, there are still some manufacturers that do not use the same production scrutiny, which can result in poorer quality of their pellets. Our research show that in some extreme cases these uncertified wood pellets contain more than 20 percent of impurities. While some of those contaminants are so big that can be visible even without microscope the majority of the contaminants are of micrometer size and can be detected and identify only under a microscope. While the current standards test the quality of pellets based on a variety of physical and chemical properties, some impurities in pellets (glass, plastic, metal, ceramics, coal, and coke) are not easily identified this way. Our research shows that reflected light microscopy can be successfully used to identify and quantify those contaminants. Although  reflected light microscopy technique is a well-known and widely used method allowing examination of various materials, this is a novel application for pellet fuels.

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5126
Author(s):  
Piyarath Saosee ◽  
Boonrod Sajjakulnukit ◽  
Shabbir H. Gheewala

Thailand is one of the upcoming wood pellet exporters in the Southeast Asia region. Wood pellet production has been gradually increasing in Thailand; however, the recent trend is more rapid. Therefore, the objective of this study is to analyze the feedstock security for wood pellet production in Thailand. The important issue of feedstock security analysis relates to availability and diversity of feedstock (Shannon index) to meet the increased demand for the wood pellets in the future. The results present that the feedstock supply (from waste wood and fast-growing tree wood) in Thailand is 5.32 million tonnes of wood pellets per year. However, increasing 25% of wood pellet export and 50% of wood pellet domestic use causes a deficit in fast-growing tree wood because para-rubber waste wood is not distributed uniformly in all regions of the country. The present diversity of feedstock supply is quite low (Shannon index 0.17). Increasing the fast-growing tree plantation area in the wastelands could help increase diversity. Recommendations on policy from this study focus on encouragement for the increase in domestic use of wood pellets, cultivation of fast-growing trees in wasteland and optimized logistics management.


Author(s):  
Syamsudin Syamsudin ◽  
Aflit Nuryulia Praswati ◽  
Siti Fatimah Nurhayati ◽  
Siti Zulaekah

Small and Medium Enterprises (IKM) play an important role in the economic growth of Sragen Regency. Efforts to empower SMEs to need to be continued, one of which is by maintaining the availability of fuel. The IKM of Kedawung District currently uses wood fuel but is hampered by the quality of firewood that is less dry. Nata de coco IKM had switched to using LPG, but it was often difficult to get it if they found it at a high price. Wood pellets are an alternative fuel source that can be used by SMIs in Sragen Regency. Sragen Regency already has wood pellet producers located in Kalijambe District. The solution offered at IKM is alternative energy biomass wood pellets. The Community Partnership Program (PKM) to be carried out is in the form of production in the form of introduction of wood pellet biomass energy and management in the form of calculating the feasibility of using wood pellets for business development. The PKM activity plan includes training and socialization of wood pellet biomass energy, the introduction of wood pellet stoves, training on the use of wood pellet stoves. The target of this PKM activity output is the IKM of Sragen Regency to get knowledge and skills to use alternative energy biomass wood pellets as fuel


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 607 ◽  
Author(s):  
Thiffault ◽  
Barrette ◽  
Blanchet ◽  
Nguyen ◽  
Adjalle

Small-scale wood pellet producers often use a trial-and-error approach for determining adequate blending of available wood processing residues and pelletizing parameters. Developing general guidelines for optimizing wood pellet quality and meeting market standards would facilitate their market entry and profitability. Four types of hardwood residues, including green wood chips, dry shavings, and solid and engineered wood sawdust, were investigated to determine the optimum blends of feedstocks and pelletizing conditions to produce pellets with low friction force, high density and high mechanical strength. The feedstock properties reported in this study included particle size distribution, wood moisture content, bulk density, ash content, calorific values, hemicelluloses, lignin, cellulose, extractives, ash major and minor elements, and carbon, nitrogen, and sulfur. All residues tested could potentially be used for wood pellet production. However, high concentrations of metals, such as aluminum, could restrict their use for accessing markets for high-quality pellets. Feedstock moisture content and composition (controlled by the proportions of the various residue sources within blends) were the most important parameters that determined pellet quality, with pelletizing process parameters having less overall influence. Residue blends with a moisture content of 9%–13.5% (dry basis), composed of 25%–50% of sawdust generated by sawing of wood pieces and a portion of green chips generated by trimming of green wood, when combined with a compressive force of 2000 N or more during pelletizing, provided optimum results in terms of minimizing friction and increasing pellet density and mechanical strength. Developing formal relationships between the type of process that generates residues, the properties of residues hence generated, and the quality of wood pellets can contribute to optimize pellet production methods.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6486
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Biomass is one of the most important sources of renewable energy. It is expected that in the coming decades, biomass will play a major role in replacing fossil fuels. The most commonly used biofuels include wood pellet, which is a cost-effective, uniform and easy-to-use material. In view of the growing interest in this type of resource, novel methods are being investigated to improve the quality of pellet. This article presents the results of a laboratory study focusing on wood pellets refined with waste sunflower cooking oil applied by spraying. In this work, authors attempted to modify the energy parameters of wood pellets with the use of waste cooking oil. Addition of waste cooking oil, applied at the rates of 2%, 4%, 6%, 8%, 10% and 12% relative to the weight of pellets, increased the calorific value of the pellets without decreasing their durability. The highest dose of the modifier (12%) on average led to a 12–16% increase in calorific value. In each case, the addition of sunflower oil resulted in decreased contents of ash in the pellets; on average a decrease of 16–38% was observed in the samples treated with the highest dose of the modifier. The treatment led to a higher content of elements affecting the heating value, i.e., carbon and hydrogen, which on average increased by 7.5–12%, and 7.0–10.0%, respectively. The presented method seems to be a promising way of increasing the calorific value of pellets. Further research on refining the method and the possibility of using it in industry is necessary.


2020 ◽  
Vol 27 (2) ◽  
pp. 178-182
Author(s):  
Ilpo Niskanen ◽  
Jukka Räty ◽  
Hariyadi Soetedjo ◽  
Kenichi Hibino ◽  
Hiroshi Oohashi ◽  
...  

AbstractThis study measured the polarised light reflected from the surface of thermally modified Scots pine (Pinus sylvestris L.) wood using a Stokes imaging polarimeter. The data were analysed using the Mueller matrix method. The Scots pine boards were heat treated in an oven at temperatures of 160 ºC, 200 ºC and 220 ºC, with a heat treatment time of 3 h at the maximum temperature. The results indicated that the chemical composition of the thermally modified wood underwent a permanent transformation, leading to a change in the degree of polarisation of the reflected light. The presented method provides useful information for inspecting the quality of thermally modified wood products.


Author(s):  
Trinath Biswal ◽  
Junaid Ahmad Malik

The soil is considered to be one of the most important substances for the existence of the biotic community. The quality of the soil is continually degrading due to the continuous exploitation of human activity. The superiority of a soil is rated on the basis of its chemical and physical characteristics. The contaminants added to the soil mainly because of human activity change the usual function and ecological properties and cause of negative impacts on agricultural productivity and soil health. The property of the soil is potentially affected by urban wastes, industrial wastes, sewage water, mining wastes, oil, radioactive wastes, deforestation, and massive use of fertilizers and pesticides. Heavy metal contamination of the soil is a vital environmental problem because it is the cause of adverse effects on the biological community through the contamination of the food chain. A continuous exposure of municipal solid waste (MSW) in the landfill sites causes leachate formation; this is percolated inside the soil leading to the change in properties.


Author(s):  
Alan Boyde ◽  
Milan Hadravský ◽  
Mojmír Petran ◽  
Timothy F. Watson ◽  
Sheila J. Jones ◽  
...  

The principles of tandem scanning reflected light microscopy and the design of recent instruments are fully described elsewhere and here only briefly. The illuminating light is intercepted by a rotating aperture disc which lies in the intermediate focal plane of a standard LM objective. This device provides an array of separate scanning beams which light up corresponding patches in the plane of focus more intensely than out of focus layers. Reflected light from these patches is imaged on to a matching array of apertures on the opposite side of the same aperture disc and which are scanning in the focal plane of the eyepiece. An arrangement of mirrors converts the central symmetry of the disc into congruency, so that the array of apertures which chop the illuminating beam is identical with the array on the observation side. Thus both illumination and “detection” are scanned in tandem, giving rise to the name Tandem Scanning Microscope (TSM). The apertures are arranged on Archimedean spirals: each opposed pair scans a single line in the image.


2012 ◽  
Vol 33 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Marek Juszczak ◽  
Katarzyna Lossy

Pollutant emission from a heat station supplied with agriculture biomass and wood pellet mixtureTests for combustion of hay and sunflower husk pellets mixed with wood pellets were performed in a horizontal-feed as well as under-feed (retort) wood pellet furnace installed in boilers with a nominal heat output of 15 and 20 kW, located in a heat station. During the combustion a slagging phenomenon was observed in the furnaces. In order to lower the temperature in the furnace, fuel feeding rate was reduced with unaltered air stream rate. The higher the proportion of wood pellets in the mixture the lower carbon monoxide concentration. The following results of carbon monoxide concentration (in mg/m3presented for 10% O2content in flue gas) for different furnaces and fuel mixtures (proportion in wt%) were obtained: horizontal-feed furnace supplied with hay/wood: 0/100 - 326; 30/70 - 157; 50/50 - 301; 100/0 - 3300; horizontal-feed furnace supplied with sunflower husk/wood: 50/50 - 1062; 67/33 - 1721; 100/0 - 3775; under-feed (retort) furnace supplied with hay/wood: 0/100 - 90; 15/85 - 157; 30/70 - 135; 50/50 - 5179; under-feed furnace supplied with sunflower husk/wood: 67/33 - 2498; 100/0 - 3128. Boiler heat output and heat efficiency was low: 7 to 13 kW and about 55%, respectively, for the boiler with horizontal-feed furnace and 9 to 14 kW and 64%, respectively, for the boiler with under-feed furnace.


2013 ◽  
pp. 215-218
Author(s):  
Robert O. Hatch ◽  
Craig M. Giles ◽  
Jay S. Creiglow ◽  
David R. Smith

The use of sodium propylene glycol for thick juice storage was investigated at Spreckels Sugar Company, in Brawley, California (USA). Sodium-polypropylene glycol has a density of 1.07 and does not mix with thick juice. Therefore it is suitable as a barrier layer. Chemical properties of propylene glycol, and the deposition on the top of thick juice are described. First results of the last campaign are compared with data from previous years. A significantly lower tendency in the reduction of the quality of the thick juice was found.


Sign in / Sign up

Export Citation Format

Share Document