scholarly journals Measurement of the degree of polarisation of thermally modified Scots pine using a Stokes imaging polarimeter

2020 ◽  
Vol 27 (2) ◽  
pp. 178-182
Author(s):  
Ilpo Niskanen ◽  
Jukka Räty ◽  
Hariyadi Soetedjo ◽  
Kenichi Hibino ◽  
Hiroshi Oohashi ◽  
...  

AbstractThis study measured the polarised light reflected from the surface of thermally modified Scots pine (Pinus sylvestris L.) wood using a Stokes imaging polarimeter. The data were analysed using the Mueller matrix method. The Scots pine boards were heat treated in an oven at temperatures of 160 ºC, 200 ºC and 220 ºC, with a heat treatment time of 3 h at the maximum temperature. The results indicated that the chemical composition of the thermally modified wood underwent a permanent transformation, leading to a change in the degree of polarisation of the reflected light. The presented method provides useful information for inspecting the quality of thermally modified wood products.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 253
Author(s):  
Ruslan Rushanovich Safin ◽  
Aigul Ravilevna Shaikhutdinova ◽  
Ruslan Khasanshin ◽  
Shamil Mukhametzyanov ◽  
Albina Safina

This work is devoted to the study of the effect of ultraviolet rays for the surface activation of pine wood thermally modified at temperatures of 180−240 °C in order to increase the surface roughness, enhance the wettability of thermal wood and the adhesive strength of the glue in the production of wood block furniture panels. Studies were carried out to measure the contact angle of wettability of thermally modified wood samples of pine, as a result of which it was determined that the ultraviolet treatment process contributes to an increase in the adhesion properties of the surface layer of thermally modified wood by more than 13% due to the reactivity of ultraviolet rays to oxidize and degrade ligno-containing wood products. At the same time, the most active process of surface activation takes place during 60 min of ultraviolet irradiation of wood with a total irradiation of at least 125 W/cm2. It was revealed that the combined effect of two-stage wood processing, including preliminary volumetric thermal modification followed by surface ultraviolet treatment, causes an increase in the moisture resistance of glued wood products by 24%. So, if the strength of the glue seam when gluing natural wood samples after boiling decreased by 46%, then the samples that underwent two-stage processing showed a decrease only by 22%. In connection with the results obtained, an improved technology for the production of furniture boards for the manufacture of moisture-resistant wood products is proposed.


Holzforschung ◽  
2019 ◽  
Vol 73 (8) ◽  
pp. 747-755 ◽  
Author(s):  
Haiying Shen ◽  
Jiaqi Xu ◽  
Jinzhen Cao ◽  
Jun Jiang ◽  
Shaodi Zhang ◽  
...  

AbstractIn order to clarify the evolution and role of extractives in thermally modified wood during the process of weathering, the compositions of acetone extractives from thermally modified Scots pine after exposure in an accelerated weathering tester for different durations were determined using gas chromatography-mass spectrometry (GC-MS). Fatty acids and phenolics were proved to be the main types of extractives in weathered thermally modified Scots pine, and some sugars, terpenes and alcohols were also collected. With the progress of weathering, the content of fatty acids decreases significantly while that of phenolics increases. The reduction or even elimination of the fatty acids is presumed to be a physical process, namely, a discharge from wood during exposure to radiation and elevated temperature. The increase of phenolic extractives is mainly due to the photodegradation of other wood components. Phenolic degradation products play the role as a “barrier” against further photodegradation of thermally modified wood, among which vanillin or its derivatives appeared to be the most predominant and important ones.


2016 ◽  
Vol 867 ◽  
pp. 19-23 ◽  
Author(s):  
Itsaree Iewkitthayakorn ◽  
Somjai Janudom ◽  
Narissara Mahathaninwong

This research focused on the effect of solution heat treated microstructures on anodic oxide formations of casting 7075 Al alloy. The casting specimens were solution heat treated at 450°C for various holding. The results showed that the quality of anodic oxide film on the specimen with 4h solution heat treatment time was higher than that of at other conditions. Because its microstructures obtained the lowest amounts of secondary phase particles leading to improve the quality of oxide film and also reduce defects in oxide film. On the other hand, coarse black particles of Mg2Si formed increasingly in microstructures of specimens after solution treatment at prolong holding time of 8h and 16h resulted in discontinues oxide films forming on them.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 1112 ◽  
Author(s):  
A. R. Shaikhutdinova ◽  
R. R. Safin ◽  
F. V. Nazipova ◽  
S. R. Mukhametzyanov

This paper proposes the use of an array of heat-treated wood of various species to make parametric furniture for the purpose of operation in the exterior, and on objects in conditions of high humidity. The dependence of change in the color range of thermowoods depending on the temperature and duration of treatment is presented. Experiments were carried out to study the biological stability of thermally modified wood treated by various technologies including: vacuum-convective thermal modification in superheated steam, convective thermal modification in high-pressure saturated steam, as well as in hydrophobic liquids, in flue gas and vacuum-conductive thermal-modifying. The degree of resistance of wood was determined, which allows to conclude that the mass losses of heat-treated specimens caused by the destructive action of fungi are significantly lower compared to untreated ones. The researchwas conducted to determine the numerical characteristics of microroughness of the polished surface of wood, thermally modified at different temperatures.   


2021 ◽  
Vol 12 (1) ◽  
pp. 41-47
Author(s):  
Yu. V. Tsapko ◽  
O. Yu. Horbachova

An analysis of the process of thermal modification of wood, which was obtained by a controlled heating process, was done. The unique technological properties (durability, low hygroscopicity and dimensional stability) of thermomodified wood make it possible to use it in various scope. Due to the influence of temperature there are some chemical changes in the structures of the wood cell wall components (lignin, cellulose and hemicellulose). This leads to an increase in density, hardness, improved hydrophobicity (water repellency), thereby reducing their ability to absorb moisture and swell. The products absorb moisture gradually, are less prone to swelling and shrinkage, but still need the elastic coatings application. It is proved that heat-treated wood turns gray over time under the influence of sunlight, and therefore requires additional surface treatment with a coating. Additional protective substances application on the thermo-modified wood products surface promotes dimensional stability and protects against rapid weathering of the surface in open air conditions. The use of transparent coatings and oils does not protect the surface from discoloration during weathering. They are recommended for products are manufactured from thermomodified wood, which are operated away from direct sunlight and rain. The parameters of moisture penetration into wood are mathematically modeled on the basis of the moisture diffusion quasi-stationary equation through the polymer coating on the flat sample surface. The dynamics of moisture content changes in thermally modified wood by different schedules parameters has been experimentally studied. The obtained mathematical relations based on the experimental studies results make it possible to calculate the moisture diffusion coefficient in thermally modified wood in the presence of a polymer shell. It is established that the wax coating application on the surface of the product reduces the moisture diffusion process more than 10 times for surfaces treated at a temperature of 160 °C for 1 hour. That is, such products can be used on objects with high humidity.


2019 ◽  
Vol 800 ◽  
pp. 240-245
Author(s):  
Andis Antons ◽  
Dace Cīrule ◽  
Ingeborga Andersone ◽  
Anrijs Verovkins ◽  
Edgars Kuka

Despite intensive research in wood protection, no simple wood treatment method is available for satisfactory wood protection that could ensure appropriate strength and bio-resistance of wood products during their service life. The present study is a part of a project that is aimed to improve wood service properties by combining wood thermal treatment and impregnation with copper containing preservatives. The objective of the present study was to investigate the effect of conventional modifications (thermal modification at relatively mild temperature range (150 - 180°C) and impregnation) and double-treatments (impregnation after thermal treatment and vice versa) on the bending properties of birch (Betula spp.) and pine (Pinussylvestris L.) wood. Bending strength considerably decreased after thermal modification of wood, however MOE values generally did not significantly change. Moreover, impregnation had no effect on the bending properties for both unmodified and thermally modified wood specimens. For double-treatment in which impregnation was carried out before thermal modification no changes in bending strength were observed comparing to thermally modified wood. However, MOE values of these specimens were 10 % for birch and 19 % for pine smaller comparing to just thermally modified wood. The results of double-treatment tests imply that, regarding wood bending properties, wood impregnation after thermal modification is more appropriate.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 50 ◽  
Author(s):  
Samuel Zelinka ◽  
Leandro Passarini ◽  
Frederick Matt ◽  
Grant Kirker

Thermally modified wood is becoming commercially available in North America for use in outdoor applications. While there have been many studies on how thermal modification affects the dimensional stability, water vapor sorption, and biodeterioration of wood, little is known about whether thermally modified wood is corrosive to metal fasteners and hangers used to hold these members in place. As thermally modified wood is used in outdoor applications, it has the potential to become wet which may lead to corrosion of embedded fasteners. Here, we examine the corrosiveness of thermally modified ash and oak in an exposure test where stainless steel, hot-dip galvanized steel, and carbon steel nails are driven into wood and exposed to a nearly 100% relative humidity environment at 27 °C for one year. The corrosion rates were compared against control specimens of untreated and preservative-treated southern pine. Stainless steel fasteners did not corrode in any specimens regardless of the treatment. The thermal modification increased the corrosiveness of the ash and oak, however, an oil treatment that is commonly applied by the manufacturer to the wood after the heat treatment reduced the corrosiveness. The carbon steel fasteners exhibited higher corrosion rates in the thermally modified hardwoods than in the preservative-treated pine control. Corrosion rates of galvanized fasteners in the hardwoods were much lower than carbon steel fasteners. These data can be used to design for corrosion when building with thermally modified wood, and highlight differences between corrosion of metals embedded in wood products.


2019 ◽  
Vol 70 (3) ◽  
pp. 273-278
Author(s):  
Vjekoslav Živković ◽  
Gustav Gabrek ◽  
Goran Mihulja

This paper presents the influence of natural surface ageing in indoor conditions on bonding quality of thermally modified wood used in structural laminated products. Two unmodified and thermally modified wood species were used for the experiment: oak and beech. Samples were planed and glued with MUF adhesive 2 hours, 1, 2, 6, 10, and 18 days after planing. Properties of laminated beech and oak beams, namely shear strength, delamination and contact angle, were measured in order to detect 1) suitability of wood species for lamination process and 2) influence of extended storage time after planing on properties of laminated wood. Generally, both native and thermally modified beech exhibited better results of shear strength and delamination and had lower contact angles compared to oak and thermally modified oak. Results of the delamination test (total delamination) indicate time dependence of surface ageing. Both unmodified and thermally modified beech may be successfully laminated at least up to 2 days after planing, whereas neither oak nor thermally modified oak are suitable for lamination process due to excessive delamination. Results of delamination may be related to contact angle measurements. Shear strength of glue lines did not show any influence on natural surface ageing. However, whereas beech and thermally modified beech samples exhibited almost the same values of the shear strength regardless of the duration of surface ageing, there is an obvious difference in shear strength of oak and thermally modified oak samples.


Holzforschung ◽  
2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Lars Elof Bryne ◽  
Jukka Lausmaa ◽  
Marie Ernstsson ◽  
Finn Englund ◽  
Magnus E.P. Wålinder

Abstract The main objective of this work was to study the chemical composition of surfaces and ageing effects on acetylated pine (Pinus sylvestris), heat treated spruce (Picea abies), and furfurylated radiata pine (Pinus radiata) in comparison to unmodified wood. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were the instruments of choice. Observation with a low-vacuum scanning electron microscope (LV-SEM) complemented the study. The spectroscopic information was also linked to a parallel wettability study on matched wood samples by the Wilhelmy method. The results show that XPS and ToF-SIMS are two powerful tools that in combination give complementary information, both quantitative and qualitative, and are well suited for observation of the ageing process of different wood surfaces. The hydrophobization process as a result of migration of extractives during ageing was well quantified by the XPS measurements and the results correlated well with wetting results. Several specific hydrophobic substances could be identified by ToF-SIMS measurements.


Sign in / Sign up

Export Citation Format

Share Document