scholarly journals Removal of Listeria monocytogenes Biofilm with Some Local Plant Extracts of Kurdistan Region

2019 ◽  
Vol 7 (2) ◽  
pp. 1-4
Author(s):  
Srwa A. Mohammed

The results of removing or reducing biofilm were determined using subinhibitory concentrations (SICs) of some local plants in the flora of Kurdistan region of Iraq on biofilm production in Listeria monocytogenes. About 10–500 µg/ml of the plant extracts were used against growth and biofilm production in tissue culture plates which were measured spectroscopically. The SIC effects of each of Eugenia caryophyllata (Clove) and Rhus glabra (Sumac) have significantly affected on planktonic cells and reduced sessile cells or biofilm formation in L. monocytogenes. Remarkably, the data showed strong biofilm reduction under synergistically effect of the plant extract mixed with the antimicrobial agents in multidrugresistant L. monocytogenes. Whereas the SIC some of other plant extracts such as Salix candida and pomegranate (Punica granatum) have significantly enhanced biofilm expression in L. monocytogenes, but the use of these extracts synergistically with some antibiotics also resulted in inhibition of biofilm in comparison to merely use of either the extracts or antibiotics. The result of statistical analyses shows that P > 0.05. The results showed that the combination of plant extract with antibiotic together has more effect than using plant merely.

Author(s):  
Seema Ramniwas ◽  
Divya Singh

Menthol extracts of four local plants (Ocimum tenuiflorum, Hibiscus, Mentha longifolia and Bougainvillea glabra) were analysed to check their toxicity on third instar larvae of B. dorsalis by estimating the larval mortality for four plant extracts and different times exposure (1-5 hr) and measured LT50 value for each plant extract. Larval mortality varies for extract of each studied plant as Ocimum tenuiflorum showed its highest value of 56.68% at 4.57hr, for hibiscus it was 72% at 3.5 hr., for Mentha longifolia it was 95.23% at 4 hr., while for Bougainvillea glabra it was 100% at 2 hr. exposure. The LT50 values for B. dorsalis varying from 1.011 for Bougainvillea glabra to 2.946 for Ocimum tenuiflorum whereas LT50 values were 1.402 and 1.123, forHibiscus and Mentha longifolia respectively. Present study results showed that Bougainvillea glabra was highly toxic whereas Ocimum tenuiflorum shows least toxicity.


2020 ◽  
Vol 8 (1) ◽  
pp. 7-11
Author(s):  
Suzan A. Sharif ◽  
Abdulilah S. Ismaeil ◽  
Akhtar A. Ahmad

In this study, the antibacterial activity of methanol extract of henna (Lawsonia inermis) leaves, ethanol extract of pomegranate (Punica granatum) peel, volatile oil of sesame (Sesamum indicum) and peanut (Arachis hypogaea) were investigated against some Gram-positive and Gram-negative bacteria includingStaphylococcus aureus, Bacillus cereus, Escherichia coli and Acinetobacter sp. Henna extract was most effective substrate against all tested bacteria followed by pomegranate and peanut while sesame was less effective. All extracts were screened for their antibacterial activity in combination with commonly used antibiotics, including ciprofloxacin and erythromycin to evaluate synergistic effects using Minimum inhibitory concentrations (MIC) method which determined by microbroth dilution assays. Different interactions (synergistic and indifference) were observed between plant extracts and used antibiotics. The fractional inhibitory concentration (FIC) index ranged from 0.01 to 1.25 for B. cereus, 0.5 to 1 for P. aeruginosa, 0.01 to 0.3 for S. aureus and 0.06 to 0.25 for A. baumannii. The best synergistic capacity appeared between erythromycin and sesame. In vitro interaction between antimicrobial agents in combination with tested plant extracts showed synergistic effects. The MICs of each antibiotic was decreased to half when it is used in combination with tested plant extracts. This decreasing in MICs was observed in all plant extracts against tested bacteria as well as the extracts exhibited weak antibacterial activity alone.


Author(s):  
S. R. Warke ◽  
V. C. Ingle ◽  
N. V. Kurkure ◽  
P. A. Tembhurne ◽  
Minakshi Prasad ◽  
...  

Listeria monocytogenes, an opportunistic food borne pathogen can cause serious infections in immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments.The biofilm transfers contamination to food products and impose risk to public health. In the present study biofilm producing ability of L. monocytogenes isolates were investigated phenotypically and genotypically by microtiter assay and multiplex PCR, respectively. Out of 38 L. monocytogenes isolates 14 were recovered from animal clinical cases, 12 bovine environment and 12 from milk samples. A total of 3 (21.42%) clinical, 2 (16.66%) environment and 3 (25%) milk samples respectively, revealed biofilm production in microtiter assay. Cumulative results showed that 23 (60.52%) out of 38 strains of L. monocytogenes were positive for luxS and flaA gene and 1 (2.63%) was positive only for the flaA gene.


2008 ◽  
Vol 1 (1) ◽  
pp. 49
Author(s):  
M. Conter ◽  
D. Paludi ◽  
A. Mureddu ◽  
E. Zanardi ◽  
S. Ghidini ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Dimitra Kostoglou ◽  
Parthena Tsaklidou ◽  
Ioannis Iliadis ◽  
Nikoletta Garoufallidou ◽  
Georgia Skarmoutsou ◽  
...  

Fresh vegetables and salads are increasingly implicated in outbreaks of foodborne infections, such as those caused by Listeria monocytogenes, a dangerous pathogen that can attach to the surfaces of the equipment creating robust biofilms withstanding the killing action of disinfectants. In this study, the antimicrobial efficiency of a natural plant terpenoid (thymol) was evaluated against a sessile population of a multi-strain L. monocytogenes cocktail developed on stainless steel surfaces incubated in lettuce broth, under optimized time and temperature conditions (54 h at 30.6 °C) as those were determined following response surface modeling, and in comparison, to that of an industrial disinfectant (benzalkonium chloride). Prior to disinfection, the minimum bactericidal concentrations (MBCs) of each compound were determined against the planktonic cells of each strain. The results revealed the advanced killing potential of thymol, with a concentration of 625 ppm (= 4 × MBC) leading to almost undetectable viable bacteria (more than 4 logs reduction following a 15-min exposure). For the same degree of killing, benzalkonium chloride needed to be used at a concentration of at least 20 times more than its MBC (70 ppm). Discriminative repetitive sequence-based polymerase chain reaction (rep-PCR) also highlighted the strain variability in both biofilm formation and resistance. In sum, thymol was found to present an effective anti-listeria action under environmental conditions mimicking those encountered in the salad industry and deserves to be further explored to improve the safety of fresh produce.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1484
Author(s):  
Felice Panebianco ◽  
Selene Rubiola ◽  
Francesco Chiesa ◽  
Tiziana Civera ◽  
Pierluigi Aldo Di Ciccio

Among food-borne pathogens, Listeria monocytogenes continues to pose concerns to food business operators due to its capacity to form biofilm in processing environments. Ozone may be an eco-friendly technology to control microbial contaminations, but data concerning its effect on Listeria monocytogenes biofilm are still limited. In this study, the effect of gaseous ozone at 50 ppm on planktonic cells and biofilm of reference and food-related Listeria monocytogenes strains was evaluated. Ozone caused a reduction in microbial loads of 3.7 ± 0.4 and 3.9 ± 0.4 Log10 CFU/mL after 10 and 30 min, respectively. A complete inactivation of planktonic cells after 6 h of treatment was observed. Biofilm inhibition and eradication treatments (50 ppm, 6 h) resulted in a significant decrease of the biofilm biomass for 59% of the strains tested, whilst a slight dampening of live cell loads in the biofilm state was observed. In conclusion, gaseous ozone is not sufficient to completely counteract Listeria monocytogenes biofilm, but it may be useful as an additional tool to contrast Listeria monocytogenes free-living cells and to improve the existing sanitization procedures in food processing environments.


2011 ◽  
Vol 77 (18) ◽  
pp. 6559-6569 ◽  
Author(s):  
Edward M. Fox ◽  
Nola Leonard ◽  
Kieran Jordan

ABSTRACTThis study aimed to characterize physiological differences between persistent and presumed nonpersistentListeria monocytogenesstrains isolated at processing facilities and to investigate the molecular basis for this by transcriptomic sequencing. Full metabolic profiles of two strains, one persistent and one nonpersistent, were initially screened using Biolog's Phenotype MicroArray (PM) technology. Based on these results, in which major differences from selected antimicrobial agents were detected, another persistent strain and two nonpersistent strains were characterized using two antimicrobial PMs. Resistance to quaternary ammonium compounds (QACs) was shown to be higher among persistent strains. Growth of persistent and nonpersistent strains in various concentrations of the QACs benzethonium chloride (BZT) and cetylpyridinium chloride (CPC) was determined. Transcriptomic sequencing of a persistent and a presumed nonpersistent strain was performed to compare gene expression among these strains in the presence and absence of BZT. Two strains, designated “frequent persisters” because they were the most frequently isolated at the processing facility, showed overall higher resistance to QACs. Transcriptome analysis showed that BZT induced a complex peptidoglycan (PG) biosynthesis response, which may play a key role in BZT resistance. Comparison of persistent and nonpersistent strains indicated that transcription of many genes was upregulated among persistent strains. This included three gene operons:pdu,cob-cbi, andeut. These genes may play a role in the persistence ofL. monocytogenesoutside the human host.


2007 ◽  
Vol 97 (2) ◽  
pp. 321-328 ◽  
Author(s):  
S. Aisling Aherne ◽  
Joseph P. Kerry ◽  
Nora M. O'Brien

Experimental evidence suggests that most herbs and spices possess a wide range of biological and pharmacological activities that may protect tissues against O2-induced damage. The objectives of the present study were: first, to determine the effects of plant extracts on the viability, membrane integrity, antioxidant status and DNA integrity of Caco-2 cells and second, to investigate the cytoprotective and genoprotective effects of these plant extracts against oxidative stress in Caco-2 cells. The plant extracts examined were rosemary (Rosmarinus officinalis L.), oregano (Origanum vulgare L.), sage (Salvia officinalis L.) and echinacea (Echinacea purpurea L.). Cell membrane integrity was assessed by the lactate dehydrogenase release assay. Viability was determined by the neutral red uptake assay (NRUA) and the concentration of compound that resulted in 50 % cell death (IC50) was calculated. Antioxidant status of the cells was assessed by measuring GSH content, catalase activity and superoxide dismutase activity. To examine their cytoprotective and genoprotective effects, Caco-2 cells were pre-treated with each plant extract for 24 h followed by exposure to H2O2. DNA damage was assessed by the comet assay and cell injury was determined by the NRUA. Rosemary was the most toxic (IC50 123 μg/ml) and echinacea the least toxic (IC50 1421 μg/ml). Sage was the only plant extract to affect the antioxidant status of the cells by increasing GSH content. Sage, oregano and rosemary protected against H2O2-induced DNA damage (olive tail moment and percentage tail DNA), whereas protection against H2O2-induced cytotoxicity was afforded by sage only.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2804-2837
Author(s):  
Chhangte Vanlalveni ◽  
Samuel Lallianrawna ◽  
Ayushi Biswas ◽  
Manickam Selvaraj ◽  
Bishwajit Changmai ◽  
...  

Herein, we have reviewed new findings in the research domain of the green synthesis of silver nanoparticles using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015.


2006 ◽  
Vol 69 (6) ◽  
pp. 1292-1296 ◽  
Author(s):  
JAMES P. FOLSOM ◽  
JOSEPH F. FRANK

Strains of Listeria monocytogenes vary in their ability to produce biofilms. This research determined if cell density, planktonic chlorine resistance, or subtype are associated with the resistance of L. monocytogenes biofilms to chlorine. Thirteen strains of L. monocytogenes were selected for this research based on biofilm accumulation on stainless steel and rep-PCR subtyping. These strains were challenged with chlorine to determine the resistance of individual strains of L. monocytogenes. Planktonic cells were exposed to 20 to 80 ppm sodium hypochlorite in 20 ppm increments for 5 min in triplicate per replication, and the experiment was replicated three times. The number of tubes with surviving L. monocytogenes was recorded for each isolate at each level of chlorine. Biofilms of each strain were grown on stainless steel coupons. The biofilms were exposed 60 ppm of sodium hypochlorite. When in planktonic culture, four strains were able to survive exposure to 40 ppm of chlorine, whereas four strains were able to survive 80 ppm of chlorine in at least one of three tubes. The remaining five strains survived exposure to 60 ppm of chlorine. Biofilms of 11 strains survived exposure to 60 ppm of chlorine. No association of biofilm chlorine resistance and planktonic chlorine resistance was observed; however, biofilm chorine resistance was similar for strains of the same subtype. Biofilm cell density was not associated with chlorine resistance. In addition, biofilms that survived chlorine treatment exhibited different biofilm morphologies. These data suggest that chlorine resistance mechanisms of planktonic cells and biofilms differ, with planktonic chlorine resistance being more affected by inducible traits, and biofilm chlorine resistance being more affected by traits not determined in this study.


Sign in / Sign up

Export Citation Format

Share Document