New Chemicals and Routes for the Preparation of Gelatin/HA Composites using the Wet Precipitation Method

2020 ◽  
Vol 23 (2) ◽  
pp. 46-50 ◽  
Author(s):  
Nur Akbar ◽  
Asril Pramutadi Andi Mustari ◽  
Atiek Rostika Noviyanti

Hydroxyapatite (HA) is a material that has many uses in a wide variety of applications such as bone repair, bone implants, and bone drug delivery systems. However, the main weakness of this material is its mechanical strength, which HA is not enough to be directly applied. Gelatin addition is used to improve the mechanical properties that can support material properties for the load-bearing application. This research aimed to obtain gelatin/HA composites with high mechanical strength. This goal is achieved by finding the optimum composite composition (addition of 20, 30, and 40% w/w gelatin), CaO precursors from chicken eggshells, and gradual composite preparation. The preparation of gelatin/HA composites was carried out using the wet precipitation method. The chemical bonding, the compressive strength of HA and gelatin/HA composites, and also morphologies were analyzed by Fourier Transform Infra-Red (FTIR), Universal Testing Machine, and Scanning Electron Microscopy (SEM) respectively. The FTIR spectra show there are chemical bonds between amide and carboxyl in gelatin and Ca2+ in HA. The best compressive strength obtained at the composition of 20% gelatin/HA composite is 99.3 MPa (meanwhile HA is 81.5 MPa). The addition of gelatin to HA increases the particle density; this contributes to the increase in mechanical strength.

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2014 ◽  
Vol 566 ◽  
pp. 158-163 ◽  
Author(s):  
A. Yosimoto ◽  
Hidetoshi Kobayashi ◽  
Keitaro Horikawa ◽  
Keiko Watanabe ◽  
Kinya Ogawa

In order to clarify the effect of strain rate and test temperature on the compressive strength and energy absorption of polyimide foam, a series of compression tests for the polyimide foam with two different densities were carried out. By using three testing devices, i.e. universal testing machine, dropping weight machine and sprit Hopkinson pressure bar apparatus, we performed a series of compression tests at various strain rates (10-3~103s-1) and at several test temperatures in the range of room temperature to 280 ̊C. At over 100 s-1, the remarkable increase of flow stress was observed. The negative temperature dependence of strength was also observed.


2011 ◽  
Vol 299-300 ◽  
pp. 480-483 ◽  
Author(s):  
Jing Yuan Yu ◽  
Qiang Li

Porous NiTi alloys were prepared by powder metallurgy method using NH4HCO3as space-holder. The effect of sintering temperature on pore characteristic, phase composition and compressive property of porous NiTi alloys was studied by XRD, SEM, EDS and a universal testing machine. The results show with the increase of sintering temperature the porosity of porous NiTi alloys first increases and then decreases, but the content of NiTi phase, compressive strength and modulous of sintered products continuously increase. When sintered at 980°C for 2h, the porous NiTi alloys have higher porosity of 53.6%, better compressive strength of 173.7MPa and elastic modulous of 4.2GPa. The phases of sinter products are mainly composed by TiNi, Ti2Ni, and TiNi3phases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Teh Sabariah Binti Abd Manan ◽  
Nur Liyana Mohd Kamal ◽  
Salmia Beddu ◽  
Taimur Khan ◽  
Daud Mohamad ◽  
...  

AbstractThe potassium (K) and sodium (Na) elements in banana are needed for hydration reaction that can enhance the strength properties of concrete. This research aims (a) to determine the material engineering properties of banana skin ash (BSA) and concrete containing BSA, (b) to measure the strength enhancement of concrete due to BSA, and (c) to identify optimal application of BSA as supplementary cement materials (SCM) in concrete. The BSA characterization were assessed through X-ray fluorescence (XRF) and Blaine’s air permeability. The workability, compressive strength, and microstructures of concrete containing BSA were analysed using slump test, universal testing machine (UTM) and scanning electron microscope (SEM). A total of 15 oxides and 19 non-oxides elements were identified in BSA with K (43.1%) the highest and Na was not detected. At 20 g of mass, the BSA had a higher bulk density (198.43 ± 0.00 cm3) than ordinary Portland cement (OPC) (36.32 ± 0.00 cm3) indicating availability of large surface area for water absorption. The concrete workability was reduced with the presence of BSA (0% BSA: > 100 mm, 1% BSA: 19 ± 1.0 mm, 2%: 15 ± 0.0 mm, 3% BSA: 10 ± 0.0 mm). The compressive strength increased with the number of curing days. The concrete microstructures were improved; interfacial transition zones (ITZ) decreased with an increase of BSA. The optimal percentage of BSA obtained was at 1.25%. The established model showed significant model terms (Sum of Squares = 260.60, F value = 69.84) with probability of 0.01% for the F-value to occur due to noise. The established model is useful for application in construction industries.


2007 ◽  
Vol 21 (3) ◽  
pp. 204-208 ◽  
Author(s):  
André Mallmann ◽  
Jane Clei Oliveira Ataíde ◽  
Rosa Amoedo ◽  
Paulo Vicente Rocha ◽  
Letícia Borges Jacques

The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL) and a resin-modified material (Vitro Fil LC® - DFL), using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC), at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%). Mean compressive strength values (MPa) were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.


2014 ◽  
Vol 695 ◽  
pp. 639-642
Author(s):  
S.N. Fitriah ◽  
M.S. Abdul Majid ◽  
R. Daud ◽  
Mohd Afendi

The paper discusses the crushing behavior of various winding angles of glass fibre reinforced epoxy (GRE) pipes at elevated temperatures. Two different winding angles of composite pipes were chosen for the study; ± 55°, ± 63°. GRE pipes angled ± 55° and ± 63° are compressed using Universal Testing Machine (UTM) at room temperature and elevated temperatures of 45°C, 65°C, and 95°C according to ASTM D695-10 standard. The temperatures were chosen based on the glass transition temperature (Tg) that was measured earlier. The results show that as the temperature is increased, the compressive strength significantly degraded. This is due to the change in the properties of the GRE pipe from a rigid state to a more rubbery state as the composite pipe reached Tg. GRE pipe with winding angle ± 55° show a higher compressive strength compared to ± 63°.


2018 ◽  
Vol 923 ◽  
pp. 130-134 ◽  
Author(s):  
Ing Kong ◽  
Kay Min Khoo ◽  
Oliver Buddrick ◽  
Abdul Aziz Baharuddin ◽  
Pooria Khalili

The aim of this study was to synthesize the geopolymer composites formed by two industrial wastes, namely red mud (RM) and saw dust (SD). SD was chemically treated with alkali for the removal of lignin and subsequently bleached, before forming composite with acid-modified RM. The composites were then characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetic analysis (TGA) and universal testing machine to study the morphology, chemical, thermal and mechanical properties. The FTIR spectrum showed that Si and Al from the raw materials played the major role in forming aluminosilicate geopolymer composites. The SEM images revealed that SD and RM particles aggregated to form fully condensed geopolymer matrices with high compressive strength of 8.3-138 MPa, which were comparable to Portland cement (compressive strength of 9-20.7 MPa).


2014 ◽  
Vol 917 ◽  
pp. 307-316 ◽  
Author(s):  
Norwahyu Jusoh ◽  
Lau Kok Keong ◽  
Azmi Mohd Shariff

Symmetric and asymmetric polysulfone membranes were fabricated using different of solvents; N-methyl-pyrrolidone (NMP), Tetrahydrofuran (THF) and Dimethylacetamide (DMAC) at different polymer concentration (15 and 20%) to study the influence of varying type of solvents and polymer concentration in membrane fabrication. The membranes were characterized using Field Emission Scanning Electron Microscopy (FESEM), Thermogravimetric Analyzer (TGA), Universal Testing Machine (UTM) and Fourier Transform Infra-Red (FTIR).The results disclosed that the symmetric, higher polymer concentration membrane contributed to better thermal and mechanical stabilities. PSF/THF membrane showed good mechanical strength while PSF/DMAC membrane illustrated great thermal stability. 20% of polymer concentration and PSF/THF membrane led to the thicker skin layer and dense structure formation.


2021 ◽  
Vol 15 (2) ◽  
pp. 129-132
Author(s):  
Mohammad Forough Reyhani ◽  
Sheida Hosseinian Ahangarnezhad ◽  
Negin Ghasemi ◽  
Amin Salem Milani

Background. Calcium-enriched mixture (CEM) cement has been introduced and marketed as a biomaterial for use in furcal perforation repair and apexogenesis procedures, in which the compressive strength that indicates the material’s resistance against crushing is of utmost importance. This study evaluated the effect of various liquid-to-powder ratios on CEM cement’s compressive strength. Methods. One gram of the cement was mixed with 0.5, 0.34, and 0.25 mL of demineralized water and transferred to stainless steel molds (6 and 4 mm in height and diameter, respectively). Five cells in the mold were considered for each group. The compressive strength test was conducted using the universal testing machine after incubating for seven days under 95% humidity at 37°C. One-way ANOVA was applied for data analysis at P≤0.05 significance level. Results. The mean compressive strength in the liquid-to-powder ratios of 0.5, 0.34, and 0.25 were 3.4456, 3.2960, and 3.3485, respectively, with no significant differences between them. Conclusion. Under this study’s limitations, changing the liquid-to-powder ratio did not affect CEM cement’s compressive strength.


Sign in / Sign up

Export Citation Format

Share Document