scholarly journals Identification of Compounds Released During Pyrolysis of Palm Kernel Shell (PKS) Using Pyrolysis-GC/MS

REAKTOR ◽  
2018 ◽  
Vol 17 (4) ◽  
pp. 185 ◽  
Author(s):  
Dieni Mansur ◽  
Sabar Pangihutan Simanungkalit

Pyrolysis is one of thermochemical conversion to convert biomass into bio-oil. The higher energy content in bio-oil suggests its potential as a raw material in the production of energy, bio-fuels, and other chemicals. Pyrolysis of PKS and the chemicals released were studied using pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) at 400-600°C. Prior to pyrolysis, thermogravimetry experiments were carried out to monitor the degradation temperature of hemicellulose, cellulose, and lignin in the PKS. Degradation of hemicellulose occurred within a temperature range of 150-330°C, whereas the cellulose was degraded in temperatures range between 330-400°C. Degradation of lignin took place within a broad range of temperatures, which reached maximum at temperatures range of 200-500°C. Based on the Py-GC/MS results, pyrolysis of PKS at 400°C produced bio-oil that can be used as biofuel due to its high aromatic compounds but low carboxylic acids contents. Keywords: bio-oil; chemical; palm kernel shell; Py-GC/MS; thermogravimetry .

Author(s):  
Edmund C. Okoroigwe ◽  
Zhenglong Li ◽  
Godwin Unachukwu ◽  
Thomas Stuecken ◽  
Christopher Saffron

Palm kernel shell is an important by-product of oil palm production. It is often neglected and handled as waste in the product mix of palm oil production. One kilogram of PKS was pyrolized in a bench scale pyrolysis screw reactor at temperature range of 450°C to 500°C in 10mins. The process yielded 61 wt%, 24.5 wt% and 14 wt% bio-oil, bio-char and non condensable flammable gas respectively. Palm Kernel shell is relatively abundant in the tropical West Africa and Asia. Until recently PKS is commonly combusted for cooking purposes which contributes to total GHG emission. The products were characterized by determining their physical and chemical properties using standard methods. The thermochemical conversion shows that there is 29% and 26% increase in the higher heating values and lower heating values (on dry basis) respectively, of the bio-oil obtained when compared with the energy values of the original PKS. Similarly, the HHV of the bio-char is 62% higher than that of the original PKS. In addition the results of the GC-MS analysis of the bio-oil show that it contains useful chemicals that can be harnessed for industrial applications. The ash content of the bio-oil and the original PKS sample are 0.37% and 8.68% respectively, on as received, while the results of the elemental analyses show that there is < 0.08% and < 0.05% sulphur content of the PKS and its bio-oil respectively. This makes the products an environmentally suitable fuels for transportation and power generation. The results of this work show that the products compare well with those of other woody samples used for commercial pyrolysis process. PKS bio-char possesses the potential to be used as industrial absorbent in water treatment and process technology. Hence, PKS can be harnessed as potential future source of bio-energy and Activated carbon, and as such should be given adequate attention as a major product of oil palm processing for sustainable economic development of emerging economies.


Author(s):  
Deana Qarizada ◽  
Erfan Mohammadian ◽  
Azil Bahari Alias ◽  
Humapar Azhar Rahimi ◽  
Suriatie Binti Mat Yusuf

Distillation is an essential thermo chemical process; it mainly depends on temperature which affects mostly the product yield and composition. The aim of this research is to investigate the effect of temperature on the characterization of bio-oil liquid fraction derived from palm kernel shell (PKS) bio-oil. The temperatures were 100 °C and 140°C. The higher heating value (HHV) obtained were 28.6MJ/Kg and 31.5MJ/Kg for bio-oil fraction 100°C and 140°C respectively. The GC- MS analysis determined that phenol is the dominant product in bio-oil fractions.


2019 ◽  
Vol 11 (11) ◽  
pp. 5877-5889 ◽  
Author(s):  
Harvindran Vasu ◽  
Choon Fai Wong ◽  
Navin Raj Vijiaretnam ◽  
Yen Yee Chong ◽  
Suchithra Thangalazhy-Gopakumar ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3474 ◽  
Author(s):  
Yichen Liu ◽  
James J. Leahy ◽  
Jacek Grams ◽  
Witold Kwapinski

Fast pyrolysis of Miscanthus, its hydrolysis residue and lignin were carried with a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) followed by online vapor catalytic upgrading with sulfated ZrO2, sulfated TiO2 and sulfated 60 wt.% ZrO2-TiO2. The most evident influence of the catalyst on the vapor phase composition was observed for aromatic hydrocarbons, light phenols and heavy phenols. A larger amount of light phenols was detected, especially when 60 wt.% ZrO2-TiO2 was present. Thus, a lower average molecular weight and lower viscosity of bio-oil could be obtained with this catalyst. Pyrolysis was also performed at different pressures of hydrogen. The pressure of H2 has a great effect on the overall yield and the composition of biomass vapors. The peak area percentages of both aromatic hydrocarbons and cyclo-alkanes are enhanced with the increasing of H2 pressure. The overall yields are higher with the addition of either H2 or sulfated catalysts. This is beneficial as phenols are valuable chemicals, thus, increasing the value of bio-oil. The results show that the hydrolysis residue has the potential to become a resource for phenol production.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Asmadib Yusoff @ Adnan ◽  
Muhammad Roslan Rahim ◽  
Mohammad Nazri Mohd. Jaafar ◽  
Norazila Othman ◽  
Mohd Shuisma Mohd Ismail ◽  
...  

Insufficient and various environmental issues of fossil fuels as the current world dominated energy is now becoming a serious global issue. The rapidly increasing demand for alternative energy sources has contributed to the steady growth of renewable energy. Owing to the fact of the abundant presence of palm kernel shell (PKS) as one of palm biomass wastes in South East Asia region, this paper investigates syngas produced from gasified PKS. The investigation is regarding its composition and combustion performance in a gas burner system. It covers emissions analysis, temperature profile and flame length. The produced syngas from downdraft gasifier was burned in the combustion chamber in air-rich and fuel-rich combustion conditions.  From the experiment, the results showed that the oxidation zone temperature of above 750°C for the downdraft gasifier is suitable for producing syngas. Produced syngas can be classified as pure-carbon monoxide (CO) syngas due to 94.9% CO content with no hydrogen (H2) content and low heating value (LHV) of 10.7 MJ/kg. The wall temperature profiles for burnt syngas produced via downdraft gasification was higher with longer pattern at fuel-rich condition, which signified higher energy of syngas produced from downdraft gasifier compared to fluidised bed gasifier.  The associated flame length was also longer at fuel-rich condition. Produced emission of 56 ppm NOX, 37 ppm CO and 1 ppm SO2 can still be considered as acceptable to human.  It can be concluded that syngas produced from PKS shown a high potential to serve as an alternative source of energy due to its high energy content.


Energy ◽  
2016 ◽  
Vol 113 ◽  
pp. 108-115 ◽  
Author(s):  
Seung-Jin Oh ◽  
Gyung-Goo Choi ◽  
Joo-Sik Kim

Author(s):  
Baiti Hidayati ◽  
Riman Sipahutar ◽  
Irwin Bizzy ◽  
Muhammad Faizal

Liquid smoke increased in demand by the community because it is made from environmentally friendly waste can directly reduce the impact of environmental pollution. The smoke condensing process that is carried out conventionally using water can be continuously replaced using a refrigeration system, the smoke condensation process can be carried out using controlled low-temperature air, this can minimize machine space and energy. In this study, an analysis of variations in air temperature will be carried out to maximize the productivity of liquid smoke. The raw material for palm kernel shell is -4 + 5 mesh with cabin temperature variations of 15-10°C, 10-5°C, and 5-0°C and pyrolysis temperature of 300-400°C. Based on the research results obtained maximum results at a temperature of 5-0°C with 23.6% liquid smoke, 3.7% tar, 63.8% charcoal, and 8.9% gas. Based on the test results of chemical compounds, liquid smoke has an average phenol value of 56.59%. The lower the air temperature used to condense the smoke, the maximum liquid smoke will be and the less gas escapes to the air. It can directly reduce air pollution in the process of making liquid smoke.


2020 ◽  
Vol 15 (2) ◽  
pp. 501-513 ◽  
Author(s):  
Achmad Shofi ◽  
Yayat Iman Supriyatna ◽  
Agus Budi Prasetyo

The aim of the reduction process is to concentrate nickel at high temperatures with a certain carbonaceous material as a reducing agent. The use of chemicals like Na2SO4 and NaCl in the reduction process can increase the content and recovery of nickel in ferronickel concentrates. A selective reduction of laterite nickel was carried out in a non-isothermal and an isothermal using palm kernel shell charcoal as a reductant and with Na2SO4 and NaCl as additives. Firstly, the raw material is made into a pellet and dried in an oven at 100 °C for two hours. The pellets are weighed before and after the reduction process. The non-isothermal reduction process used the Thermal Gravimetric Analysis (TGA) method from a temperature of 100 to 1300 °C, with a heat rate of 10 °C per minute. The isothermal reduction at temperatures 500, 600, 700, 950, 1050, and 1150 °C occurred with a reduction time of 30, 60, and 90 minutes. The analysis is Inductively Coupled Plasma (ICP) to determine the content of nickel and iron from the reduction process, X-ray Diffraction (XRD) to see changes in the phases formed after the selective reduction process, and Scanning Electron Microscopy (SEM-EDX) for viewing the microstructure of the phase. The Differential Thermal Analyzer-Temperature Gravimetric Analysis (DTA-TGA) results show the endothermic at 256 °C, and the exothermic peak at 935 °C with a total mass loss of 42.15% at 1238 °C. The shrinking core model was used for the kinetic studies of the reduction process. The closest kinetic model to the experimental results is the Ginstling-Brounshtein model, with an activation energy value of 8.73 kcal/mol. Copyright © 2020 BCREC Group. All rights reserved 


2014 ◽  
Vol 10 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Hua-Feng Yang ◽  
Song-Lei Wang ◽  
Shu-Juan Yu ◽  
Xin-An Zeng ◽  
Da Wen Sun

Abstract The volatile composition of six Chinese sugarcane varieties has been analyzed by headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography-mass spectrometry (GC-MS). A total of 40 volatile compounds were identified by the optimized HS-SPME procedure. It was found that the sugarcane juice from Daheixiong variety contained the highest amount of volatile compounds (108.48 mg/L), followed by Tai 22 (90.13 mg/L), 94128 (87.19 mg/L), Gui 00122 (80.16 mg/L), Yue 00236 (79.43 mg/L) and Taiyou (22.54 mg/L). Ethyl alcohol, limonene, hexanol, (s)-2-heptanol and acetic acid were the most abundant compounds present in sugarcane juice. Interestingly, these compounds were also selected by principal component analysis (PCA) to discriminate the sugarcane juices in terms of their varieties. Overall, the identification of aromatic compounds in sugarcane juice could provide useful information for determining sugarcane varieties and be used as a reference for choosing the suitable sugarcane variety as raw material for producing other product, like rums.


Sign in / Sign up

Export Citation Format

Share Document