scholarly journals Targeting Mitochondria for Cancer Treatment – Two Types of Mitochondrial Dysfunction

2014 ◽  
Vol 115 (3-4) ◽  
pp. 104-119 ◽  
Author(s):  
Jiří Pokorný ◽  
Jan Pokorný ◽  
Jitka Kobilková ◽  
Anna Jandová ◽  
Jan Vrba ◽  
...  

Two basic types of cancers were identified – those with the mitochondrial dysfunction in cancer cells (the Warburg effect) or in fibroblasts supplying energy rich metabolites to a cancer cell with functional mitochondria (the reverse Warburg effect). Inner membrane potential of the functional and dysfunctional mitochondria measured by fluorescent dyes (e.g. by Rhodamine 123) displays low and high values (apparent potential), respectively, which is in contrast to the level of oxidative metabolism. Mitochondrial dysfunction (full function) results in reduced (high) oxidative metabolism, low (high) real membrane potential, a simple layer (two layers) of transported protons around mitochondria, and high (low) damping of microtubule electric polar vibrations. Crucial modifications are caused by ordered water layer (exclusion zone). For the high oxidative metabolism one proton layer is at the mitochondrial membrane and the other at the outer rim of the ordered water layer. High and low damping of electric polar vibrations results in decreased and increased electromagnetic activity in cancer cells with the normal and the reverse Warburg effect, respectively. Due to nonlinear properties the electromagnetic frequency spectra of cancer cells and transformed fibroblasts are shifted in directions corresponding to their power deviations resulting in disturbances of interactions and escape from tissue control. The cancer cells and fibroblasts of the reverse Warburg effect tumors display frequency shifts in mutually opposite directions resulting in early generalization. High oxidative metabolism conditions high aggressiveness. Mitochondrial dysfunction, a gate to malignancy along the cancer transformation pathway, forms a narrow neck which could be convenient for cancer treatment.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jiří Pokorný ◽  
Alberto Foletti ◽  
Jitka Kobilková ◽  
Anna Jandová ◽  
Jan Vrba ◽  
...  

Biological systems are hierarchically self-organized complex structures characterized by nonlinear interactions. Biochemical energy is transformed into work of physical forces required for various biological functions. We postulate that energy transduction depends on endogenous electrodynamic fields generated by microtubules. Microtubules and mitochondria colocalize in cells with microtubules providing tracks for mitochondrial movement. Besides energy transformation, mitochondria form a spatially distributed proton charge layer and a resultant strong static electric field, which causes water ordering in the surrounding cytosol. These effects create conditions for generation of coherent electrodynamic field. The metabolic energy transduction pathways are strongly affected in cancers. Mitochondrial dysfunction in cancer cells (Warburg effect) or in fibroblasts associated with cancer cells (reverse Warburg effect) results in decreased or increased power of the generated electromagnetic field, respectively, and shifted and rebuilt frequency spectra. Disturbed electrodynamic interaction forces between cancer and healthy cells may favor local invasion and metastasis. A therapeutic strategy of targeting dysfunctional mitochondria for restoration of their physiological functions makes it possible to switch on the natural apoptotic pathway blocked in cancer transformed cells. Experience with dichloroacetate in cancer treatment and reestablishment of the healthy state may help in the development of novel effective drugs aimed at the mitochondrial function.


Author(s):  
Shihao Pei ◽  
Jia-Bei Li ◽  
Zhuo Wang ◽  
Yao Xie ◽  
Jiabo Chen ◽  
...  

Carbon monoxide (CO) can cause mitochondrial dysfunction, inducing apoptosis of cancer cells which sheds light on a potential alternative for cancer treatment. However, the existing CO-based compounds are inherently limited...


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Zhiyu Wang ◽  
Neng Wang ◽  
Jianping Chen ◽  
Jiangang Shen

Molecular-targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells have different metabolic properties from normal cells. Normal cells mostly rely upon the process of mitochondrial oxidative phosphorylation to produce energy whereas cancer cells have developed an altered metabolism that allows them to sustain higher proliferation rates. Cancer cells could predominantly produce energy by glycolysis even in the presence of oxygen. This alternative metabolic characteristic is known as the “Warburg Effect.” Although the exact mechanisms underlying the Warburg effect are unclear, recent progress indicates that glycolytic pathway of cancer cells could be a critical target for drug discovery. With a long history in cancer treatment, traditional Chinese medicine (TCM) is recognized as a valuable source for seeking bioactive anticancer compounds. A great progress has been made to identify active compounds from herbal medicine targeting on glycolysis for cancer treatment. Herein, we provide an overall picture of the current understanding of the molecular targets in the cancer glycolytic pathway and reviewed active compounds from Chinese herbal medicine with the potentials to inhibit the metabolic targets for cancer treatment. Combination of TCM with conventional therapies will provide an attractive strategy for improving clinical outcome in cancer treatment.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Claudio D. Gonzalez ◽  
Silvia Alvarez ◽  
Alejandro Ropolo ◽  
Carla Rosenzvit ◽  
Maria F. Gonzalez Bagnes ◽  
...  

Autophagy is a highly regulated-cell pathway for degrading long-lived proteins as well as for clearing cytoplasmic organelles. Autophagy is a key contributor to cellular homeostasis and metabolism. Warburg hypothesized that cancer growth is frequently associated with a deviation of a set of energy generation mechanisms to a nonoxidative breakdown of glucose. This cellular phenomenon seems to rely on a respiratory impairment, linked to mitochondrial dysfunction. This mitochondrial dysfunction results in a switch to anaerobic glycolysis. It has been recently suggested that epithelial cancer cells may induce the Warburg effect in neighboring stromal fibroblasts in which autophagy was activated. These series of observations drove to the proposal of a putative reverse Warburg effect of pathophysiological relevance for, at least, some tumor phenotypes. In this review we introduce the autophagy process and its regulation and its selective pathways and role in cancer cell metabolism. We define and describe the Warburg effect and the newly suggested “reverse” hypothesis. We also discuss the potential value of modulating autophagy with several pharmacological agents able to modify the Warburg effect. The association of the Warburg effect in cancer and stromal cells to tumor-related autophagy may be of relevance for further development of experimental therapeutics as well as for cancer prevention.


2014 ◽  
Vol 09 (01) ◽  
pp. 115-133 ◽  
Author(s):  
JIŘÍ POKORNÝ ◽  
JAN POKORNÝ ◽  
JITKA KOBILKOVÁ ◽  
ANNA JANDOVÁ ◽  
JAN VRBA ◽  
...  

The fundamental property of biological systems is a coherent state far from thermodynamic equilibrium excited and sustained by energy supply. Mitochondria in eukaryotic cells produce energy and form conditions for excitation of oscillations in microtubules. Microtubule polar oscillations generate a coherent state far from thermodynamic equilibrium which makes possible cooperation of cells in the tissue. Mitochondrial dysfunction (the Warburg effect) in cancer development breaks down energy of the coherent state far from thermodynamic equilibrium and excludes the afflicted cell from the ordered multicellular tissue system. Cancer lowering of energy and coherence of the state far from thermodynamic equilibrium is the biggest difference from the healthy cells. Cancer treatment should target mitochondrial dysfunction to restore the coherent state far from thermodynamic equilibrium, apoptotic pathway, and subordination of the cell in the tissue. A vast variety of genetic changes and other disturbances in different cancers can result in several triggers of mitochondrial dysfunction. In cancers with the Warburg effect, mitochondrial dysfunction can be treated by inhibition of four isoforms of pyruvate dehydrogenase kinases. Treatment of the reverse Warburg effect cancers would be more complicated. Disturbances of cellular electromagnetic activity by conducting and asbestos fibers present a special problem of treatment.


Author(s):  
Annie Riera Leal ◽  
Pablo Ortiz‑Lazareno ◽  
Luis Jave‑Su�rez ◽  
Adri�n Ram�rez De Arellano ◽  
Adriana Aguilar‑Lemarroy ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2819 ◽  
Author(s):  
Rosa Maria Pascale ◽  
Diego Francesco Calvisi ◽  
Maria Maddalena Simile ◽  
Claudio Francesco Feo ◽  
Francesco Feo

The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 205 ◽  
Author(s):  
Przemysław Duda ◽  
Jakub Janczara ◽  
James A. McCubrey ◽  
Agnieszka Gizak ◽  
Dariusz Rakus

Fibroblasts are important contributors to cancer development. They create a tumor microenvironment and modulate our metabolism and treatment resistance. In the present paper, we demonstrate that healthy fibroblasts induce metabolic coupling with non-small cell lung cancer cells by down-regulating the expression of glycolytic enzymes in cancer cells and increasing the fibroblasts’ ability to release lactate and thus support cancer cells with energy-rich glucose-derived metabolites, such as lactate and pyruvate—a process known as the reverse Warburg effect. We demonstrate that these changes result from a fibroblasts-stimulated increase in the expression of fructose bisphosphatase (Fbp) in cancer cells and the consequent modulation of Hif1α function. We show that, in contrast to current beliefs, in lung cancer cells, the predominant and strong interaction with the Hif1α form of Fbp is not the liver (Fbp1) but in the muscle (Fbp2) isoform. Since Fbp2 oligomerization state and thus, its role is regulated by AMP and NAD+—crucial indicators of cellular metabolic conditions—we hypothesize that the Hif1α-dependent regulation of the metabolism in cancer is modulated through Fbp2, a sensor of the energy and redox state of a cell.


2020 ◽  
Vol 10 (5) ◽  
pp. 1826
Author(s):  
Jiří Pokorný ◽  
Jan Pokorný ◽  
Jitka Kobilková ◽  
Anna Jandová ◽  
Robert Holaj

Cancer can be initiated in a cell or a fibroblast by short-circuiting of the cellular electromagnetic field by various fibers, parasitic energy consumption, virus infections, and mitochondrial defects, leading to a damped cellular electromagnetic field. Except short-circuiting (e.g., by asbestos fibers), the central process is mitochondrial dysfunction in cancer cells (the Warburg effect) or in fibroblasts associated with a cancer cell (the reverse Warburg effect), critically lowered respiration, reversed polarity of the ordered water layers around mitochondria, and damped electromagnetic activity of the affected cells. Frequency and power changes of the generated electromagnetic field result in broken communication between cells and possibly in reduced control over chemical reactions, with an increased probability of random genome mutations. An interdisciplinary framework of phenomena related to cancer development is presented, with special attention to the causes and consequences of disturbed cellular electromagnetic activity. Our framework extends the current knowledge of carcinogenesis, to clarify yet unexplained phenomena leading to genome mutation and cancer initiation.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Tram B. Doan ◽  
Vanessa Cheung ◽  
Colin D. Clyne ◽  
Heidi N. Hilton ◽  
Natalie Eriksson ◽  
...  

Abstract Background The role of nuclear receptors in both the aetiology and treatment of breast cancer is exemplified by the use of the oestrogen receptor (ER) as a prognostic marker and treatment target. Treatments targeting the oestrogen signalling pathway are initially highly effective for most patients. However, for the breast cancers that fail to respond, or become resistant, to current endocrine treatments, the long-term outlook is poor. ER is a member of the nuclear receptor superfamily, comprising 48 members in the human, many of which are expressed in the breast and could be used as alternative targets in cases where current treatments are ineffective. Methods We used sparse canonical correlation analysis to interrogate potential novel nuclear receptor expression relationships in normal breast and breast cancer. These were further explored using whole transcriptome profiling in breast cancer cells after combinations of ligand treatments. Results Using this approach, we discovered a tumour suppressive relationship between the mineralocorticoid receptor (MR) and retinoic acid receptors (RAR), in particular RARβ. Expression profiling of MR expressing breast cancer cells revealed that mineralocorticoid and retinoid co-treatment activated an expression program consistent with a reverse Warburg effect and growth inhibition, which was not observed with either ligand alone. Moreover, high expression of both MR and RARB was associated with improved breast cancer-specific survival. Conclusion Our study reveals a previously unknown relationship between MR and RAR in the breast, which is dependent on menopausal state and altered in malignancy. This finding identifies potential new targets for the treatment of breast cancers that are refractory to existing therapeutic options.


Sign in / Sign up

Export Citation Format

Share Document