scholarly journals SARS-CoV-2: a new threat

Author(s):  
Cristina A. López Rodríguez ◽  
Marc Boigues Pons ◽  
Bibiana Quirant Sánchez ◽  
Aina Teniente Serra ◽  
Joan Climent Martí ◽  
...  

AbstractBackgroundThe pandemic caused by the emergence of the new SARS-CoV-2 virus worldwide has had a major impact at all levels and has forced in-depth research into its behavior, pathogenicity and treatment.ContentThis review provides an overview of various aspects of the virus and the immune response it triggers, as well as a description of the different diagnostic and therapeutic approaches adopted.SummarySARS-COV-2 is a RNA virus with some peculiarities that make it different from its predecessors SARS-CoV and MERS. Given its structural characteristics and pathogenesis, it can cause different clinical manifestations as the disease progresses. The immune system has been proven to play a major role in the response to this virus and, therefore, the study of antibodies and lymphocyte populations during the different stages of the disease is crucial.OutlookThe knowledge of the effect of the virus and the immune response is crucial for the development of good quality vaccines, therapies and diagnostic techniques, which are essential for the control and eradication of the disease.

2021 ◽  
pp. 160-197
Author(s):  
Elena Locci ◽  
Silvia Raymond

In recent years, immunotherapy has revolutionized the treatment of cancer; however, inflammatory reactions in healthy tissues often have side effects that can be serious and lead to permanent discontinuation of treatment. This toxicity is not yet well understood and is a major obstacle to the use of immunotherapy. When the immune system is so severely activated, the resulting inflammatory reaction can have detrimental effects and sometimes serious damage to healthy tissue. We wanted to know if there was a difference between an optimal immune response that aims to kill cancer and an unwanted response that could affect healthy tissue. Identifying the distinctive elements between these two immune responses allows the development of new, more effective and less toxic therapeutic approaches. Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


2019 ◽  
Vol 20 (6) ◽  
pp. 1287 ◽  
Author(s):  
Nelson Ferreira ◽  
Maria Saraiva ◽  
Maria Almeida

Transthyretin (TTR) amyloidoses (ATTR amyloidosis) are diseases associated with transthyretin (TTR) misfolding, aggregation and extracellular deposition in tissues as amyloid. Clinical manifestations of the disease are variable and include mainly polyneuropathy and/or cardiomyopathy. The reasons why TTR forms aggregates and amyloid are related with amino acid substitutions in the protein due to mutations, or with environmental alterations associated with aging, that make the protein more unstable and prone to aggregation. According to this model, several therapeutic approaches have been proposed for the diseases that range from stabilization of TTR, using chemical chaperones, to clearance of the aggregated protein deposited in tissues in the form of oligomers or small aggregates, by the action of disruptors or by activation of the immune system. Interestingly, different studies revealed that curcumin presents anti-amyloid properties, targeting multiple steps in the ATTR amyloidogenic cascade. The effects of curcumin on ATTR amyloidosis will be reviewed and discussed in the current work in order to contribute to knowledge of the molecular mechanisms involved in TTR amyloidosis and propose more efficient drugs for therapy.


2021 ◽  
Vol 5 (1) ◽  
pp. 077-086
Author(s):  
Nikhra Vinod

Introduction - evolution of SARS-CoV-2 variants: With the unrestrained pandemic for over last one-and-half year, SARS-CoV-2 seems to have adapted to its habitat, the human host, through mutations that facilitate its replication and transmission. The G variant incorporating D614G mutation, potently more transmissible than the ancestral virus arose during January 2020 and spread widely. Since then, various SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) with higher infectivity or virulence or both, have evolved on the background of G variant, and spread widely. SARS-CoV-2 infection and the immunodynamics: As the virus becomes more transmissible, its lethality may drop. Apart from the humoral immunity, T-cell recognition from a previous SARS-CoV-2 infection or vaccination may modify the disease transmission correlates and its clinical manifestations. On the other hand, the immunity generated may reduce probability of re-infection as well as limit evolution of adaptive mutations, and emergence of highly infectious and immune-escape variants. There are complex issues related to the SARS-CoV-2 evolutionary dynamics and host’s immunodynamics. Trending etiopathoimmunological correlates: The evolution potential of SARS-CoV-2 is limited because of proofreading function of nsp14. The S protein mutations affect transmissibility, virulence, and vaccine efficacy. The D614G mutation in G variant with higher infectivity has turned the Chinese epidemic into a pandemic. Other SARS-CoV-2 variants, such as Alpha, Beta, Gamma, and Delta seem to have evolved as result of adaptation to selective pressures during periods of prolonged infections and subsequent transmission. Further, there is issue of convergent association of mutations. Basics of immunity and immune system failure: The nature of the immune response after natural SARS-CoV-2 infection is variable and diverse. There are pre-existing neutralizing antibodies and sensitized T cells elicited during previous infection with seasonal CoVs influencing the disease susceptibility and course. The virus has evolved adaptive mechanisms to reduce its exposure to IFN-I and there are issues related to erratic and overactive immune response. The altered neutralizing epitopes in the S protein in SARS-CoV-2 variants modify the immune landscapes and clinical manifestations. Conclusion: current scenarios and prospects: Presently, the SARS-CoV-2 infection is widespread with multiple evolving infectious variants. There is probability of its transition from epidemic to endemic phase in due course manifesting as a mild disease especially in the younger population. Conversely, the pandemic may continue with enhanced disease severity due to evolving variants, expanded infection pool, and changing immunity landscape. There is need to plan for the transition and continued circulation of the virus during the endemic phase or continuing pandemic for indefinite period.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Pankita H. Pandya ◽  
Mary E. Murray ◽  
Karen E. Pollok ◽  
Jamie L. Renbarger

Interplay among immune activation and cancer pathogenesis provides the framework for a novel subspecialty known as immunooncology. In the rapidly evolving field of immunooncology, understanding the tumor-specific immune response enhances understanding of cancer resistance. This review highlights the fundamentals of incorporating precision medicine to discover new immune biomarkers and predictive signatures. Using a personalized approach may have a significant, positive impact on the use of oncolytics to better guide safer and more effective therapies.


2021 ◽  
Vol 22 (6) ◽  
pp. 2954
Author(s):  
Alison Jee ◽  
Samantha Christine Sernoskie ◽  
Jack Uetrecht

Idiosyncratic drug-induced liver injury (IDILI) remains a significant problem for patients and drug development. The idiosyncratic nature of IDILI makes mechanistic studies difficult, and little is known of its pathogenesis for certain. Circumstantial evidence suggests that most, but not all, IDILI is caused by reactive metabolites of drugs that are bioactivated by cytochromes P450 and other enzymes in the liver. Additionally, there is overwhelming evidence that most IDILI is mediated by the adaptive immune system; one example being the association of IDILI caused by specific drugs with specific human leukocyte antigen (HLA) haplotypes, and this may in part explain the idiosyncratic nature of these reactions. The T cell receptor repertoire likely also contributes to the idiosyncratic nature. Although most of the liver injury is likely mediated by the adaptive immune system, specifically cytotoxic CD8+ T cells, adaptive immune activation first requires an innate immune response to activate antigen presenting cells and produce cytokines required for T cell proliferation. This innate response is likely caused by either a reactive metabolite or some form of cell stress that is clinically silent but not idiosyncratic. If this is true it would make it possible to study the early steps in the immune response that in some patients can lead to IDILI. Other hypotheses have been proposed, such as mitochondrial injury, inhibition of the bile salt export pump, unfolded protein response, and oxidative stress although, in most cases, it is likely that they are also involved in the initiation of an immune response rather than representing a completely separate mechanism. Using the clinical manifestations of liver injury from a number of examples of IDILI-associated drugs, this review aims to summarize and illustrate these mechanistic hypotheses.


Author(s):  
Abdullahi Alausa ◽  
Rofiat Adeyemi ◽  
Barakat Olaleke ◽  
Aminat Ismail ◽  
Faith Sunday Oyelere

COVID-19 infection, a ravaging disease attributed to a SARS-CoV-like illness, has brought the world to its knee, causing a pandemic, with human-human transmission as a major source of the spread of this ailment. Alarmingly, this infection based on clinical manifestations is diagnosed as virus-induced pneumonia, with over 5 million cases with a mortality rate of about 7% (based on the recently published global report). However, most deaths have been associated with patients with underlying immune dysfunction or a compromised immunesystem. As no specific therapeutics and vaccines have been reported, the strengthening of the immune system through nutritional intake and exercise is essential. Also, previous studies have documented the immune-activating capabilities of Vitamin A and D, along with supplementary induction, yielding positive results in combating previous viral challenges. Typically, the gradual upsurge of T-lymphocytes and immune cell activities has been implemented by moderate exercise activities. This review examines the role of nutrition and exercise in immune system enhancement and proposes the possible mechanism of nutrition and exercise in combating COVID-19 infection.


2021 ◽  
pp. 141-181
Author(s):  
Ricardo Gobato ◽  
Abhijit Mitra

In recent years, immunotherapy has revolutionized the treatment of cancer; However, inflammatory reactions in healthy tissues often have side effects that can be serious and lead to permanent discontinuation of treatment. This toxicity is not yet well understood and is a major obstacle to the use of immunotherapy. When the immune system is so severely activated, the resulting inflammatory reaction can have detrimental effects and sometimes serious damage to healthy tissue. We wanted to know if there was a difference between an optimal immune response that aims to kill cancer and an unwanted response that could affect healthy tissue. Identifying the distinctive elements between these two immune responses allows the development of new, more effective and less toxic therapeutic approaches. Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening, Treatment; Management


Author(s):  
Faroogh Marofi ◽  
Ramyar Azizi ◽  
Roza Motavalli ◽  
Ghasem Vahedi ◽  
Maryam Nasimi ◽  
...  

: Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) firstly emerged in Wuhan, China at the end of 2019. After going through the experimental process, the virus was named the novel coronavirus (2019-nCoV) by the World Health Organization (WHO) in February 2020 which has created a global pandemic. The coronavirus disease 2019 (COVID-19) infection is challenging the people who are especially suffering from chronic health problems such as asthma, diabetes, and heart disease or immune system deteriorating disorders, including cancers, Alzheimer's, etc. Other predisposing/risk factors consist of smoking and age (elderly people are at higher risk). The 2019-nCoV attacks epithelial cells in all organs, particularly epithelial cells in the lungs, resulting in viral pneumonia. The 2019-nCoV starts its invasion with the attachment and entry into the respiratory tract epithelial cells via angiotensin-converting enzyme 2 (ACE2) receptors on the epithelial cells. The critical problem with 2019-nCoV is its ability in human to the human asymptomatic transmission which causes the rapid and hidden spread of the virus among the population. Also, there are several reports of highly variable and tightly case-dependent clinical manifestations caused by SARS-CoV2, which made the virus more enigmatic. The clinical symptoms are varied from common manifestations which occurred in flu and cold, such as cough, fever, body-ache, trembling, and runny nose to severe conditions, like the acute respiratory distress syndrome (ARDS) or even uncommon/unusual symptoms such as anosmia, skin color change, and stroke. In fact, besides serious injuries in the respiratory system, COVID-19 invades and damages various organs, including the kidney, liver, gastrointestinal, and nervous system. Accordingly, to cut the transmission chain of disease and control the infection spread. One of the major solutions seems to be early detection of the carriers, particularly the asymptomatic people with the help of sensitive and accurate diagnostic techniques. Moreover, developing novel and appropriate therapeutic approaches will contribute to the suitable management of the pandemic. Therefore, there is an urgent necessity to make comprehensive investigations and study reviews about COVID-19, offering the latest findings of novel therapies, drugs, epidemiology, and routes of virus transmission and pathogenesis. In this review, we discuss new therapeutic outcomes and cover and the most significant aspects of COVID-19, including the epidemiology, biological features, organs failure, and diagnostic techniques.


Hemato ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 463-476
Author(s):  
Ryann Quinn ◽  
Irina Murakhovskaya

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a variety of clinical manifestations related to viral tissue damage, as well as a virally induced immune response. Hyperstimulation of the immune system can serve as a trigger for autoimmunity. Several immune-mediated manifestations have been described in the course of SARS-CoV-2 infection. Immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA) are the most common hematologic autoimmune disorders seen in the course of SARS-CoV-2 infection. Vaccine-induced thrombocytopenia is a unique autoimmune hematologic cytopenia associated with SARS-CoV-2 vaccination. This paper will review the current literature on the association of SARS-CoV-2 infection and vaccination with autoimmune cytopenias and the clinical course of autoimmune cytopenias in patients with COVID-19.


2021 ◽  
Author(s):  
Zhuo Zhou ◽  
Xinyi Zhang ◽  
Xiaobo Lei ◽  
Xia Xiao ◽  
Tao Jiao ◽  
...  

Abstract The global coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. How the host immune system senses and responds to SARS-CoV-2 infection remain to be determined. Here, we report that SARS-CoV-2 infection activates the innate immune response through the cytosolic DNA sensing cGAS-STING pathway. SARS-CoV-2 infection induces the cellular level of 2'3'-cGAMP associated with STING activation. cGAS recognizes chromatin DNA shuttled from the nucleus as a result of cell-to-cell fusion upon SARS-CoV-2 infection. We further demonstrate that the expression of spike protein from SARS-CoV-2 and ACE2 from host cells is sufficient to trigger cytoplasmic chromatin upon cell fusion. Furthermore, cytoplasmic chromatin-cGAS-STING pathway, but not MAVS mediated viral RNA sensing pathway, contributes to interferon and pro-inflammatory gene expression upon cell fusion. Finally, we show that cGAS is required for host antiviral responses against SARS-CoV-2, and a STING-activating compound potently inhibits viral replication. Together, our study reported a previously unappreciated mechanism by which the host innate immune system responds to SARS-CoV-2 infection, mediated by cytoplasmic chromatin from the infected cells. Targeting the cytoplasmic chromatin-cGAS-STING pathway may offer novel therapeutic opportunities in treating COVID-19. In addition, these findings extend our knowledge in host defense against viral infection by showing that host cells’ self-nucleic acids can be employed as a “danger signal” to alarm the immune system.


Sign in / Sign up

Export Citation Format

Share Document