scholarly journals Immune Response to the Pathogenesis of COVID-19 Infection: Possible Mechanism of Nutrition (Vitamins, Supplement) and Exercise

Author(s):  
Abdullahi Alausa ◽  
Rofiat Adeyemi ◽  
Barakat Olaleke ◽  
Aminat Ismail ◽  
Faith Sunday Oyelere

COVID-19 infection, a ravaging disease attributed to a SARS-CoV-like illness, has brought the world to its knee, causing a pandemic, with human-human transmission as a major source of the spread of this ailment. Alarmingly, this infection based on clinical manifestations is diagnosed as virus-induced pneumonia, with over 5 million cases with a mortality rate of about 7% (based on the recently published global report). However, most deaths have been associated with patients with underlying immune dysfunction or a compromised immunesystem. As no specific therapeutics and vaccines have been reported, the strengthening of the immune system through nutritional intake and exercise is essential. Also, previous studies have documented the immune-activating capabilities of Vitamin A and D, along with supplementary induction, yielding positive results in combating previous viral challenges. Typically, the gradual upsurge of T-lymphocytes and immune cell activities has been implemented by moderate exercise activities. This review examines the role of nutrition and exercise in immune system enhancement and proposes the possible mechanism of nutrition and exercise in combating COVID-19 infection.

2021 ◽  
Vol 8 ◽  
Author(s):  
Mohammed M. Almutairi ◽  
Farzane Sivandzade ◽  
Thamer H. Albekairi ◽  
Faleh Alqahtani ◽  
Luca Cucullo

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.


2020 ◽  
Vol 9 (1) ◽  
pp. 60
Author(s):  
Putu Oky ari Tania

Candidiasis is an infection caused by fungal Candida albicans. The incidence of candidiasis is pretty high in Indonesia. Candida albicans develop their pathogenicity by several ways so that it can invade and escape from the immune system. The host’s immune system must always be vigilant to recognized antigen through various receptors, activation of the transduction pathway and activation of various immune cells. But as organisms that struggle to survive, Candida also develops mechanisms to escape the immune response. There are so many articles have written the immune response against candidiasis, this review aims to understand more and updating information about the biological processes of pathogenicity of fungi and the mechanism of Candida albicans in escaping immune responses, the role of each innate molecule and immune cell, and clinical aspect to Candida albicans infections. We already facing the big challenges against therapy of fungal infection, so by understanding the escape mechanism of Candida albicans, it is possible to developed antifungal or Candida vaccine in the future, therefore the incidence of candidiasis can be suppressed.


Author(s):  
Azahara María García-Serna ◽  
Elena Martín-Orozco ◽  
Trinidad Hernández-Caselles ◽  
Eva Morales

It is suggested that programming of the immune system starts before birth and is shaped by environmental influences acting during critical windows of susceptibility for human development. Prenatal and perinatal exposure to physiological, biological, physical, or chemical factors can trigger permanent, irreversible changes to the developing immune system, which may be reflected in cord blood of neonates. The aim of this narrative review is to summarize the evidence on the role of the prenatal and perinatal environment, including season of birth, mode of delivery, exposure to common allergens, a farming environment, pet ownership, and exposure to tobacco smoking and pollutants, in shaping the immune cell populations and cytokines at birth in humans. We also discuss how reported disruptions in the immune system at birth might contribute to the development of asthma and related allergic manifestations later in life.


Author(s):  
Luis Sánchez-del-Campo ◽  
Román Martí-Díaz ◽  
María F. Montenegro ◽  
Rebeca González-Guerrero ◽  
Trinidad Hernández-Caselles ◽  
...  

Abstract Background The application of immune-based therapies has revolutionized cancer treatment. Yet how the immune system responds to phenotypically heterogeneous populations within tumors is poorly understood. In melanoma, one of the major determinants of phenotypic identity is the lineage survival oncogene MITF that integrates diverse microenvironmental cues to coordinate melanoma survival, senescence bypass, differentiation, proliferation, invasion, metabolism and DNA damage repair. Whether MITF also controls the immune response is unknown. Methods By using several mouse melanoma models, we examine the potential role of MITF to modulate the anti-melanoma immune response. ChIP-seq data analysis, ChIP-qPCR, CRISPR-Cas9 genome editing, and luciferase reporter assays were utilized to identify ADAM10 as a direct MITF target gene. Western blotting, confocal microscopy, flow cytometry, and natural killer (NK) cytotoxicity assays were used to determine the underlying mechanisms by which MITF-driven phenotypic plasticity modulates melanoma NK cell-mediated killing. Results Here we show that MITF regulates expression of ADAM10, a key sheddase that cleaves the MICA/B family of ligands for NK cells. By controlling melanoma recognition by NK-cells MITF thereby controls the melanoma response to the innate immune system. Consequently, while melanoma MITFLow cells can be effectively suppressed by NK-mediated killing, MITF-expressing cells escape NK cell surveillance. Conclusion Our results reveal how modulation of MITF activity can impact the anti-melanoma immune response with implications for the application of anti-melanoma immunotherapies.


2021 ◽  
pp. 1-10
Author(s):  
Bader Alshehri

Breast cancer being the most malignant and lethal disease persistent among women globally. Immunotherapy as a new treatment modality has emerged in understanding the loopholes in the treatment of breast cancer which is mainly attributed to the potential of tumor cells to evade and survive the immune response by developing various strategies. Therefore, improved understanding of the immune evasion by cancer cells and the monoclonal antibodies against PD- and PD-L1 can help us in the diagnosis of this malignancy. Here in this article, I have highlighted that in addition to focusing on other strategies for breast cancer treatment, the involvement of immune system in breast cancer is vital for the understanding of this malignancy. Further, the complete involvement of immune system in the relapse or recurrence of the breast tumor and have also highlighted the role of vaccines, PD-1 and CTLA-4 with the recent advances in the field. Moreover, in addition to the application of immunotherapy as a sole therapy, combinations of immunotherapy with various strategies like targeting it with MEK inhibitors, Vaccines, chemotherapy and PARP inhibitor has shown to have significant benefits is also discussed in this article.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 113 ◽  
Author(s):  
Stephanie Maia Acuña ◽  
Lucile Maria Floeter-Winter ◽  
Sandra Marcia Muxel

An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen–host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.


2021 ◽  
Vol 10 (5) ◽  
pp. 1131
Author(s):  
Magdalena Chmielińska ◽  
Marzena Olesińska ◽  
Katarzyna Romanowska-Próchnicka ◽  
Dariusz Szukiewicz

Haptoglobin (Hp) is an acute phase protein which supports the immune response and protects tissues from free radicals. Its concentration correlates with disease activity in spondyloarthropathies (SpAs). The Hp polymorphism determines the functional differences between Hp1 and Hp2 protein products. The role of the Hp polymorphism has been demonstrated in many diseases. In particular, the Hp 2-2 phenotype has been associated with the unfavorable course of some inflammatory and autoimmune disorders. Its potential role in modulating the immune system in SpA is still unknown. This article contains pathophysiological considerations on the potential relationship between Hp, its polymorphism and SpA.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Yuntian Shen ◽  
Qiang Zhao ◽  
Jiangbo Wu ◽  
Zhuoran Wang ◽  
Wei Yang

Introduction: Cardiac arrest (CA) is associated with high mortality and morbidity, which is in part due to infectious complications developed in CA patients. Infection complications, particularly pneumonia, occur in approximately 60% of CA patients. Given this high incidence, we hypothesized that after CA, the immune system is impaired, which increases the susceptibility of CA patients to potential infections. Therefore, in this study, we systematically examined the immune response in the brain and peripheral immune organs after CA. Methods: Mice were subjected to CA and cardiopulmonary resuscitation (CA/CPR). Flow cytometry, ELISA, immunohistochemistry, and quantitative PCR were used to analyze the immune response in various post-CA organs. Results: First, we characterized the time course of the immune response in the spleen after CA/CPR. CA/CPR induced significant changes in all major immune cell populations. Notably, B cell frequencies decreased, while T cell frequencies increased, in various organs on day 3 post-CA. Further, the levels of pro-inflammatory cytokines, eg IL-6, were markedly increased in the blood and brain after CA. Critically, we found that the lymphocyte counts in the spleen and thymus were dramatically lower in CA mice than in sham mice. Interestingly, CA/CPR caused progressive atrophy of the spleen and thymus. Since it has been shown that CA/CPR alters activity of the hypothalamic-pituitary-adrenal (HPA) axis, we speculated that CA-induced atrophy of lymphoid organs is mediated by the HPA axis. Thus, we treated CA mice with RU486, a glucocorticoid receptor antagonist. Indeed, this treatment reversed CA-induced organ atrophy and mitigated immune cell depletion, both in the thymus and spleen. Conclusions: We provided for the first time evidence that CA/CPR rapidly induced a systemic inflammatory response followed by impairment of the immune system, which eventually led to a massive loss of immune cells in the peripheral immune organs. This CA-induced immunodeficiency appears to be mediated by dysregulation of the HPA axis. Our findings here may be of high clinical significance, considering the high incidence of infectious complications in CA patients and their detrimental effects on CA outcome.


2021 ◽  
Vol 5 (7) ◽  
pp. 01-04
Author(s):  
Vida Tajiknia ◽  
Maryam Ghandali ◽  
Ardavan Ahmadvand ◽  
Ali Afrasiabi ◽  
Reza Pirdehghan ◽  
...  

Since the first month of this new pandemic situation, all around the world healthcare system has been facing different challenges and difficulties; patients with chronic diseases such as cancer or diabetes with impaired immune system were at greater risk of infections and complications. It goes without saying that this issue was extremely important among pediatric clinicians dealing with diabetic pediatrics. Diabetes is the number one chronic illness among pediatric patients and the most dangerous and frightened complication of it is Diabetic Ketoacidosis (DKA). Studies have shown a strong association between pandemic and increase in new diabetes type 1 cases and its lethal complication called DKA. Here we are going to take a look at existing data and report about cases with this condition trying to find the missing piece of a big puzzle; what is the role of Covid-19 in causing Diabetes in previously healthy kids and what is the real association between SARS-COV2 virus infection and DKA? We are going to review different studies, possible mechanism, new t1dm cases and old cases, with or without covid infection, DKA cases and its severity.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3198 ◽  
Author(s):  
Francesco Pecora ◽  
Federica Persico ◽  
Alberto Argentiero ◽  
Cosimo Neglia ◽  
Susanna Esposito

Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).


Sign in / Sign up

Export Citation Format

Share Document