scholarly journals Antibacterial Composite Layers on Ti: Role of ZnO Nanoparticles

2016 ◽  
Vol 61 (2) ◽  
pp. 937-940 ◽  
Author(s):  
A. Roguska ◽  
A. Belcarz ◽  
P. Suchecki ◽  
M. Andrzejczuk ◽  
M. Lewandowska

Abstract Problem of post-operative infections of implant materials caused by bacterial adhesion to their surfaces is very serious. Enhancement of antibacterial properties is potentially beneficial for biomaterials value. Therefore, the metallic and metallic oxide nanoparticles attract particular attention as antimicrobial factors. The aim of this work was to create nanotubular (NT) oxide layers on Ti with the addition of ZnO nanoparticles, designed for antibacterial biomedical coatings. Antimicrobial activities of titanium, TiO2 NT and ZnO/TiO2 NT surfaces were evaluated against bacterial strain typical for orthopaedic infections: S. epidermidis. TiO2 NT alone killed the free bacterial cells significantly but promoted their adhesion to the surfaces. The presence of moderate amount of ZnO nanoparticles significantly reduced the S. epidermidis cells adhesion and viability of bacterial cells in contact with modified surfaces. However, higher amount of loaded nanoZnO showed the reduced antimicrobial properties than the medium amount, suggesting the overdose effect.

2016 ◽  
Vol 61 (1) ◽  
pp. 213-216
Author(s):  
A. Roguska ◽  
A. Belcarz ◽  
P. Suchecki ◽  
M. Andrzejczuk ◽  
M. Lewandowska

Problem of Post-operative infections of implant materials caused by bacterial adhesion to their surfaces is very serious. Enhancement of antibacterial properties is potentially beneficial for biomaterials value. Therefore, the metallic and metallic oxide nanoparticles attract particular attention as antimicrobial factors. The aim of this work was to create nanotubular (NT) oxide layers on Ti with the addition of ZnO nanoparticles, designed for antibacterial biomedical coatings. Antimicrobial activities of titanium, TiO2NT and ZnO/TiO2NT surfaces were evaluated against bacterial strain typical for orthopaedic infections: S. epidermidis. TiO2NT alone killed the free bacterial cells significantly but promoted their adhesion to the surfaces. The presence of moderate amount of ZnO nanoparticles significantly reduced the S. epidermidis cells adhesion and viability of bacterial cells in contact with modified surfaces. However, higher amount of loaded nanoZnO showed the reduced antimicrobial properties than the medium amount, suggesting the overdose effect.


2020 ◽  
Vol 20 (10) ◽  
pp. 5977-5996 ◽  
Author(s):  
Saee Gharpure ◽  
Balaprasad Ankamwar

With increase in incidence of multidrug resistant pathogens, there is a demand to adapt newer approaches in order to combat these diseases as traditional therapy is insufficient for their treatment. Use of nanotechnology provides a promising alternative as antimicrobial agents as against traditional antibiotics. Metal oxides have been exploited for a long times for their antimicrobial properties. Zinc oxide nanoparticles (ZnO NPs) are preferred over other metal oxide nanoparticles because of their bio-compatible nature and excellent antibacterial potentials. The basic mechanism of bactericidal nature of ZnO nanoparticles includes physical contact between ZnO nanoparticles and the bacterial cell wall, generation of reactive oxygen species (ROS) as well as free radicals and release of Zn2+ ions. This review focuses on different synthesis methods of ZnO nanoparticles, various analytical techniques frequently used for testing antibacterial properties, mechanism explaining antibacterial nature of ZnO nanoparticles as well as different factors affecting the antibacterial properties.


Author(s):  
Jayanta Sarma ◽  
Gurvinder Singh ◽  
Mukta Gupta ◽  
Reena Gupta ◽  
Bhupinder Kapoor

Objective: The synthesis of novel benzimidazole-hydrazone derivatives has been carried out based on the previous findings that both these pharmacophores possess potent antimicrobial activities. The antibacterial properties of synthesized derivatives were screened against both Gram-positive and Gram-negative bacteria.Methods: O-phenylenediamine on condensation with substituted aromatic acids in polyphosphoric acid gave benzimidazole nucleus which on reaction with ethyl chloroacetate and hydrazine hydrate in two different steps resulted in the formation of substituted acetohydrazides. The targeted compounds 6a-l were synthesized by reaction of substituted acetohydrazides with aromatic aldehydes and screened for their antibacterial potential by cup-plate method.Results: The synthesized benzimidazole-hydrazones exhibited moderate to strong antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The compounds 6a-6f were found to be most effective against S. aureus, E. coli, and P. aeruginosa. Among all the synthesized compounds, the zone of inhibition of 6f in highest concentration, i.e., 100 μg/ml were found to be >31 mm against all the stains of bacteria.Conclusion: The antibacterial results revealed that the synthetized derivatives have significant antimicrobial properties and further structure activity relationship studies may develop more potent and less toxic molecules.


1986 ◽  
Vol 32 (6) ◽  
pp. 498-504 ◽  
Author(s):  
Richard L. Hodinka ◽  
Malcolm C. Modrzakowski

The nonoxidative antibacterial properties of isolated rat polymorphonuclear leukocyte granule contents were examined using Salmonella typhimurium LT-2 and a series of progressively rough lipopolysaccharide mutants of this strain as target bacteria. The granule extract was most active at 37 °C, with a substantial decrease in activity observed at lower temperatures. Deep rough bacterial mutants were killed best within a pH range of 6–8, while killing of mutants with increased lipopolysaccharide content was most efficient at an acid pH of 5. The activity of the extract was dependent on incubation time but was independent of the number of bacterial cells present in the assay mixture. The killing action of the granule extract was inhibited by the cations Na+, K+, Mg2+, Ca, and Fe2+. The degree of inhibition was dependent on the type and concentration of ion used. Rough mutants grown with aeration to log phase were killed more efficiently than the same mutants grown to stationary phase under static conditions. Also, gram-positive bacteria were more susceptible to the extract than were gram-negative organisms.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaofei Tian ◽  
Yaping Li ◽  
Sikang Wan ◽  
Zhenqiang Wu ◽  
Zhiwei Wang

It is of significant interest to create functional flexible surfaces that simultaneously exhibit high water-resistance and antimicrobial performances for medical or packaging applications. This study reported a synthesis of functional surface coating on flexible cellulose materials (filter papers) with ZnO nanoparticles and binds of renewable soybean oil-based polymers. Self-aggregation of ZnO nanoparticles could form ZnO particles with two regular morphological patterns. Rather than a rod-like morphology, a flower-like ZnO benefited a promotion of surface hydrophobicity. Moreover, surface with the flower-like ZnO showed a 51.6% promotion on antimicrobial activities against Gram-negative bacteria (E. coli) than the rod-like ZnO. A low binder/ZnO ratio of 0.2 led to a remarkable improvement on water repelling performances without negative effects on a coating adhesion of ZnO. Under this condition, a hydrophobic surface was achieved with a large static contact angle of 138° when applying ZnO nanoparticles at a dosage of 3 g m−2.


2013 ◽  
Vol 43 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Emrah Çakmakçi ◽  
Ozan Deveoglu ◽  
Ahmed Muhammed ◽  
Ali Fouad ◽  
Emine Torgan ◽  
...  

Purpose – In this study, it was aimed to investigate the antibacterial properties of natural pigments prepared from Thymus serpyllum. Design/methodology/approach – Al (III), Fe (II), Sn (II) and Cu (II) complexed natural pigments were obtained by using a precipitation method and the main constituents in the pigments were identified with HPLC-DAD. Also FTIR analysis was performed for further structural characterization. Moreover, the thermal stability and thermal degradation properties of the pigments were analyzed by thermogravimetric analyses (TGA). The antimicrobial activity of the thyme plant-extracted pigments was evaluated by measuring the minimal inhibitory concentration. Findings – Apigenin and luteolin flavones were detected as the main components of the natural dyes. Thermal degradation behaviour of the pigments was determined by means of TGA. All pigments showed high char yields and it was attributed to the high complexation between the metal and the ligand species. The antimicrobial activity of the thyme plant-extracted pigments was measured and it was found that all pigments had high antimicrobial activity. Aluminum-thymus pigments showed the highest antimicrobial efficiency among other pigments used in this study. Originality/value – The obtained pigments have high antimicrobial activities, and therefore, they can be used for the production of antimicrobial textiles. Furthermore, Thymus-based natural pigments might have potential applications in coating, paint, plastic industries, etc.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
I. DeAlba-Montero ◽  
Jesús Guajardo-Pacheco ◽  
Elpidio Morales-Sánchez ◽  
Rene Araujo-Martínez ◽  
G. M. Loredo-Becerra ◽  
...  

This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles againstEscherichia coli,Staphylococcus aureus, andEnterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates overE. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.


2021 ◽  
pp. 189-201
Author(s):  
Aleksandra Bocarov-Stancic ◽  
Jelena Krulj ◽  
Marijana Maslovaric ◽  
Marija Bodroza-Solarov ◽  
Rade Jovanovic ◽  
...  

There has been worldwide an increasing interest and more strict criteria for food/feed safety including absence or reduction of the total number of microorganisms (bacteria, moulds and yeasts). Besides heavy metals, materials of biological origin (plant extracts, bio waste, chitosan etc.), some mineral adsorbents also have antimicrobial properties. There is much information about the antibacterial activity of the modified bentonite, montmoriollonite, smectute, zeolites and antifungal activity of various metal ion-exchanged zeolites and natural mineral clay, but there is almost no information about the antimicrobial properties of pyrophyllite, a monoclinic mineral from the group of phyllosilicates. This work summarizes the recent developments of antimicrobial agents and their application, current research, and trends in the area, highlighting pyrophyllite and its potential applications. Pyrophyllite, an unexploited mineral, possesses antimicrobial properties such as antibacterial and antifungal activities against foodborne pathogens which contributes to the protection of consumer?s health and preservation of the environment. Results from preliminary investigations indicate that pyrophyllite showed antibacterial properties against Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and antifungal properties against fungal pathogens (Fusarium oxysporum, Phoma glomerata and Rhizoctonia solani). This mineral can also be used for biological control of F. oxysporum in the soil for growing potato.


2015 ◽  
Vol 68 (2) ◽  
pp. 288 ◽  
Author(s):  
Adriana Berenice Pérez Jiménez ◽  
Carlos Alberto Huerta Aguilar ◽  
Jorge Manuel Vázquez Ramos ◽  
Pandiyan Thangarasu

ZnO nanoparticles (NPs) were prepared using the hydrothermal method, and then doped with Ag or Au NPs, yielding ZnO NPs, ZnO–Ag NPs, and ZnO–Au NPs, which were characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The synthesized nanomaterials were analyzed for their antibacterial properties against bacterial strains (Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella typhi) by qualitative and quantitative assays. Minimal inhibitory concentration (MIC) results show that growth control is more effective for Gram-positive bacteria than for Gram-negative bacteria. Although ZnO NPs and Ag NPs are antibacterial agents, the lowest bacterial growth was observed for ZnO–Ag NPs, showing that the doped Ag NPs greatly facilitate the interaction between the microbial cells and the NP surface. Though the same antibacterial effect was expected for ZnO–Au NPs, the inhibition activity was very close to that of ZnO NPs. The order of bacterial cell growth inhibition was ZnO–Ag NPs >> ZnO–Au NPs ~ ZnO NPs >> ZnO powder. We also analyzed the morphology of bacterial cells treated with NPs by scanning electron microscopy.


2021 ◽  
Author(s):  
Bharat BK kwatra

ZnO nanoparticles have received a lot of interest in recent years due to their unusual features. Antimicrobial properties of ZnO NPs However, the qualities of nanoparticles are determined by their size and form, making them suitable for a variety of applications. The current work looks at the synthesis, characterization, and antibacterial activity of ZnO NPs produced by Vigna Mungo and Rhizobacteria. Rhizobacteria isolated from V. mungo root nodule were morphologically, biochemically, and molecularly examined and identified as Rhizobium sp. strain P4 and Bacillus flexus strain IFO15715. The GC-MS analysis of methanol leaf extract of V. mungo was performed to detect and identify bioactive chemicals, and this indicated phytol as an antibacterial agent, while Squalene and Alpha tocopherol had antioxidant and anti-tumour properties. Agar well diffusion experiment was used to determine the antibacterial properties of ZnO nanoparticles and Vigna Mungo leaf extract. This approach is widely documented, and standard zones of inhibition for sensitive and resistant values have been defined. The results demonstrated that both methanol extract and zinc oxide nanoparticles have strong antibacterial efficacy against the majority of the pathogens examined. he synthesized nanoparticles from Rhizobium sp. were characterized by analytical techniques like SEM, XRD, FTIR, and UV Vis.


Sign in / Sign up

Export Citation Format

Share Document