scholarly journals Sediment origin and pedogenesis in the former mill pond basin of Turznice (north-central Poland) based on magnetic susceptibility measurements

2016 ◽  
Vol 11 (1) ◽  
pp. 55-69
Author(s):  
Łukasz Mendyk ◽  
Piotr Hulisz ◽  
Grzegorz Kusza ◽  
Marcin Świtoniak ◽  
Leszek Gersztyn ◽  
...  

Abstract This paper aims to assess the usefulness of magnetic susceptibility measurements in pedological studies of mill pond sediments. The study area includes the former Turznice mill pond basin located in the south-eastern part of the Grudziądz Basin. Four soil profiles were selected within the transect located along the longitudinal axis of the basin. The following soil properties were determined in the collected samples: bulk density, particle size distribution, pH, content of carbonates, approximate content of organic matter (LOI), total organic carbon (TOC), total nitrogen (Nt), and the pseudo-total contents of metals (Fe, Mn, Cu, Zn, Pb, Ni, Cd). The obtained results were correlated with the specific (mass) magnetic susceptibility (χ). This study revealed that the variability of the soil cover in the basin was driven by different sedimentation conditions. The different composition of natural terrace deposits versus mill pond sediments has been well reflected in the magnetic properties. However, the possibility cannot be excluded that a pedogenic (gleyic) process is the key factor causing the vertical variability of magnetic properties in studied soils.

2020 ◽  
Vol 46 (1) ◽  
pp. 49
Author(s):  
Solomon Sunday Jatto ◽  
Kizito O Musa ◽  
Usikalu R. Mojisola

Magnetic susceptibility measurements remain one of the most reliable methods used to investigate the pollution of both surface and subsurface soil from metallic anthropogenic sources. Most of the geological rocks within the study area increase the susceptibility of the soil; however, knowing the natural background susceptibility of the parent rocks will give an idea of the anthropogenic influence on the susceptibility of the soil. This study was carried out in Kogi State, North Central Nigeria, with the aim of determining the depth of the boundary between the anthropogenic influences on soil magnetic susceptibility from those of a lithogenic origin. Magnetic susceptibility measurements were carried out on 1,760 soil samples, collected from 220 soil profiles at a depth of 80.0 cm and at intervals of 10.0 cm. From the spatial distribution of magnetic susceptibility maps at different depths, the boundary between the basement complex and the sedimentary basin was clearly demarcated. The result further shows the highest magnetic susceptibility values of 350–650 × 10−5 SI, which dominates the surface soil to a depth of 40.0 cm. At the depth of 40–50 cm, the result indicates the combination of a natural anthropogenic influence on soil magnetic susceptibility with an average of 250 × 10−5 SI. Furthermore, no evidence of layering along the depth sections was observed, suggesting that the soil profiles indicate areas mainly covered by anthropogenically influenced susceptibility, which were localized and restricted to commercial places within the state. This study reveals that the average depth of soil affected by anthropogenic pollutants is between 40–50 cm in commercial places and 20–30 cm in other places with less commercial activities.


Separations ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 47
Author(s):  
Raúl González-Martín ◽  
Adrián Gutiérrez-Serpa ◽  
Verónica Pino

Ferrofluids (FFs) constitute a type of tunable magnetic material, formed by magnetic nanoparticles suspended in a liquid carrier. The astonishing magnetic properties of these materials and their liquid nature have led to their extended use in different applications, including fields such as magnetochemistry, optics, and biomedicine, among others. Recently, FFs have been incorporated as extractant materials in magnetic-driven analytical sample preparation procedures, thus, permitting the development of different applications. FF-based extraction takes advantage of both the magnetic susceptibility of the nanoparticles and the properties of the liquid carrier, which are responsible for a wide variety of interactions with analytes and ultimately are a key factor in achieving better extraction performance. This review article classifies existing FFs in terms of the solvent used as a carrier (organic solvents, water, ionic liquids, deep eutectic solvents, and supramolecular solvents) while overviewing the most relevant analytical applications in the last decade.


2020 ◽  
Author(s):  
Diliara Kuzina ◽  
Yusupova Anastasia ◽  
Nurgaliev Danis ◽  
Krylov Pavel ◽  
Antonenko Vadim ◽  
...  

<p>In paper presented results of complex investigations of Lake Bannoe (53°34'40.5"N 58°38'05.0"E) and its sediments. The origin of the Lake is tectonic. Seismoacoustic investigations were carried out for choose the best places for coring with continuous sedimentation and avoid gas saturated sediments. 4 long cores of sediments (up to 5.5 meters) were collected with using special hydraulic corer.</p><p>To study the sediments, a set of methods was used including petromagnetic and paleomagnetic studies, the study of mineralogical and elemental composition. According radiocarbon dating the maximum age of samples is 12.5 thousand. The age of samples increases with depth naturally, which means we have continuous sedimentation without hiatus.</p><p>Measurements of magnetic susceptibility (MS), hysteresis parameters and thermomagnetic analysis were carried out to determine changes in magnetic mineralogy and sedimentation conditions. Thermomagnetic curves measured on Curie express balance, coercitive parameters on J-coercivity spectrometer and magnetic susceptibility on multi-function kappabridge MFK1-FA (AGICO). The elemental composition was studied on an S8 Tiger X-ray fluorescence wave dispersion spectrometer. X-ray diffraction was performed on a Bruker D2 Phaser for studying mineralogical composition.</p><p>Changes in the magnetic susceptibility along the section are not significant, which indicates the constancy of sedimentation conditions. Only lower part, below 4.7 meters, MS increasing which corresponds to big input of terrigenous material. Most common magnetic minerals of sediments are pyrite and magnetite. Main minerals are quartz, albite, mica, from 1.3 meters and below in sediments detected calcite and dolomite.</p><p>Obtained data from all methods (magnetic properties, minerology, elemental composition) used for preliminary paleoclimatic and paleoenvironmental reconstructions of South Ural region for last 12.5 kyr. According petromagnetic data there is no big changes in sedimentation conditions. Also elemental composition shows the same, no big changes. Bottom part of sediments core are consist of more coarse material this is reflected both in magnetic properties and in elemental composition.</p><p>This work was funded by the Russian Science Foundation under grant № 18-17-00251.</p>


1993 ◽  
Vol 07 (01n03) ◽  
pp. 867-870 ◽  
Author(s):  
H. SHIRAISHI ◽  
T. HORI ◽  
Y. YAMAGUCHI ◽  
S. FUNAHASHI ◽  
K. KANEMATSU

The magnetic susceptibility measurements have been made on antiferromagnetic compounds Mn1–xFexSn2 and the magnetic phase diagram was illustrated. The high temperature magnetic phases I and III, major phases, were analyzed on the basis of molecular field theory and explained the change of magnetic structure I⇌III occured at x≈0.8.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


2012 ◽  
Vol 190 ◽  
pp. 97-100 ◽  
Author(s):  
V.V. Glushkov ◽  
A.V. Kuznetsov ◽  
I. Sannikov ◽  
A.V. Bogach ◽  
S.V. Demishev ◽  
...  

We report the magnetic properties of EuxCa1-xB6 single crystals (0.756x1) studied in the wide range of temperatures (1.8-300 K) and magnetic fields (up to 50 kOe). It was found that low field magnetic susceptibility χ (T) follows the Curie-Weiss law χ~(T-Θp)-1 at high temperatures for all the concentrations studied. The effective magnetic moment of the Eu2+ ion estimated from the data diminishes from the free ion value μeff7.93μB (μB - Bohr magneton) for x=1 to μeff7.3μB for x=0.756. A universal behavior of magnetic susceptibility χ~(T-Θ)-α (α=1.5) is detected close to the Curie temperature TC in the paramagnetic state at both metallic (x>xC~0.8) and dielectric (xC.


1989 ◽  
Vol 175 ◽  
Author(s):  
Wolfgang Haase ◽  
Stefan Gehring ◽  
Bettina Borchers

AbstractMagnetic susceptibility data (300–520 K) of monomeric and dimeric mesogenic copper(II) compounds are presented. Different magnetic effects arising from the paramagnetic Cu(II)-centres and the diamagnetic anisotropy of the mesogenic groups are observed and discussed with respect to possible inter molecular interactions.


2014 ◽  
Vol 43 (19) ◽  
pp. 7263-7268 ◽  
Author(s):  
Tiffany M. Smith ◽  
Michael Tichenor ◽  
Yuan-Zhu Zhang ◽  
Kim R. Dunbar ◽  
Jon Zubieta

The three-dimensional [Co3(OH)2(H2O)2(aptet)4] exhibits magnetic properties consistent with a ferrimagnetic chain with the non-compensating resultant moment of one Co(ii) per trinuclear Co(ii) subunit and ac magnetic susceptibility indicative of glassy-like magnetic behavior.


2011 ◽  
Vol 25 (26) ◽  
pp. 3435-3442
Author(s):  
XIAOYAN YAO

Wang–Landau algorithm of Monte Carlo simulation is performed to understand the thermodynamic and magnetic properties of antiferromagnetic Ising model on honeycomb lattice. The internal energy, specific heat, free energy and entropy are calculated to present the thermodynamic behavior. For magnetic property, the magnetization and magnetic susceptibility are discussed at different temperature upon different magnetic field. The antiferromagnetic order is confirmed to be the ground state of the system, and it can be destroyed by a large magnetic field.


2002 ◽  
Vol 17 (11) ◽  
pp. 2960-2965 ◽  
Author(s):  
E. Arushanov ◽  
L. Ivanenko ◽  
D. Eckert ◽  
G. Behr ◽  
U. K. Rößler ◽  
...  

Results of magnetization and magnetic susceptibility measurements on undoped and Co-doped FeSi2.5 single crystals are presented. The temperature dependence of the magnetic susceptibility of the Co-doped sample in the range of 5–300 K can be explained by temperature-dependent contributions due to paramagnetic centers and the carriers excited thermally in the extrinsic conductivity region. The values of the paramagnetic Curie temperature and activation energy of the donor levels were estimated. It is also shown that the magnetic susceptibility of Co-doped samples cooled in zero external field and in a field are different. This resembles the properties of spin-glasses and indicates the presence of coupling between magnetic centers.


Sign in / Sign up

Export Citation Format

Share Document