scholarly journals SKA3 up-regulation promotes lung adenocarcinoma growth and is a predictor of poor prognosis

2019 ◽  
Vol 14 (1) ◽  
pp. 392-399
Author(s):  
Rong-Li Sun ◽  
Feng-Juan Liu ◽  
Xiao Wu ◽  
Li-Sheng Wang ◽  
Peng-Fei Wang ◽  
...  

AbstractObjectiveThe objective of this research is to investigate the expression and function of SKA3 in lung adenocarcinoma.MethodsThe mRNA expression level of SKA3 in lung adenocarcinoma and its association with clinic-pathological factors were analyzed using data obtained from the TCGA database. Small interfering RNA (siRNA) for SKA3 (si-SKA3) was used to down-regulate SKA3 in A549 cells. pcDNA3.1- SKA3 was used to overexpress SKA3 in A549 cells. The proliferation ability of A549 cells was determined via MTT assay and colony formation assay. A wound healing assay was performed to examine the migration ability of A549 cells. The protein expression of p-MEK, MEK, p-ERK and ERK were determined by western blot.ResultsWe found that SKA3 is up-regulated in lung adenocarcinoma compared to the normal lung tissues. Kaplan-Meier analysis showed that high SKA3 expression is markedly associated with poor prognosis in lung adenocarcinoma patients. SKA3 expression is significantly correlated with age, gender, pathologic-stage, pathologic-N and pathologic-M. Moreover, depleting SKA3 obviously inhibited A549 cell proliferation and migration in vitro, while overexpression of SKA3 notably increased A549 cell proliferation and migration. Western blot analysis showed that the protein expression ratio of p-MEK/MEK and p-ERK/ERK decreased noticeably after depleting SKA3.ConclusionSKA3 expression was enhanced and associated with poor prognosis in lung adenocarcinoma patients, and it might play a facilitating role in cell growth and motility by regulating the MAPK signaling pathway.

2021 ◽  
Author(s):  
Duan Lin can ◽  
Jiang Xiu lin ◽  
Tan Lin ◽  
Yuan Yi xiao ◽  
Wang Juan ◽  
...  

Abstract BackgroundHyaluronan mediated motility receptor (also known as RHAMM) is another one of few defined hyaluronan receptors, play pivotal roles in cell growth. However, the relationships between HMMR and prognosis and tumor-infiltrating lymphocytes in lung adenocarcinoma remain unclear.MethodsHMMR expression was analyzed emoloyed the TIMER, GEPIA, UALCAN, CCLE databases, the prognosis of HMMR was analysis by prognoscan, KMplot and GEPIA databases. The GO and KEGG pathway was analysis by the DAVID and GSEA software. The correlation between the HMMR expression was analysis by the TIMER databases, the gene and protein networks was analysis by Genemania and STRING databases, the DNA methylation was analysis by the MethSurv and UALCAN databases, the gene mutation of HMMR was analysis by the cBioportal and COSMIC databases. The expression of HMMR was analysis by IHC and qPCR, the function of HMMR on cell proliferation and migration was examine by the cell growth curve, clone information, transwell and wound healing assay.ResultsIn this study, we find that HMMR was elevated in LUAD and it’s highly expression associated with the poor prognosis and lymph node metastasis. Furthermore, the expression of HMMR was induced by hypoxia in LUAD. HMMR expression level not only positively correlation with the different immune cells, but also positively correlation with the expression of immune checkpoints related gene, for instance, CD279, CD274, CTLA4, LAG3, PDCD1LG2, TIGIT and HAVCR2. Finally, depletion of HMMR significantly represses the cell growth and migration of NSCLC. Overall, this study emphasized the significance of HMMR in cancer progression and Immune infiltration of LUAD.ConclusionsWe demonstrated HMMR was elevated in LUAD and positively relation to poor prognosis. We find the hypoxia microenvironment and DNA hypomethylation able to up-regulation of the HMMR expression. Additionally, HMMR expression was positive with the diverse immune cell and immune regulator related gene in LUAD. Finally, we found that depletion of HMMR was inhibits the cell proliferation and migration ability of NSCLC cells. These findings suggest that HMMR could be served as a biomarker for prognosis and immune infiltration in LUAD.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ye Qian ◽  
Yan Zhang ◽  
Haoming Ji ◽  
Yucheng Shen ◽  
Liangfeng Zheng ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) serve as tumor promoters or suppressors in the development of various human malignancies, including LUAD. Although long intergenic non-protein coding RNA 1089 (LINC01089) suppresses the progression of breast cancer, its mechanism in LUAD requires further exploration. Thus, we aimed to investigate the underlying function and mechanism of LINC01089 in LUAD. Methods The expression of LINC01089 in LUAD and normal cell lines was detected. Functional assays were applied to measure cell proliferation, apoptosis and migration. Besides, mechanism experiments were employed for assessing the interplay among LINC01089, miR-301b-3p and StAR related lipid transfer domain containing 13 (STARD13). Data achieved in this study was statistically analyzed with Student’s t test or one-way analysis of variance. Results LINC01089 expression was significantly down-regulated in LUAD tissues and cells and its overexpression could reduce cell proliferation and migration. Moreover, LINC01089 could regulate STARD13 expression through competitively binding to miR-301b-3p in LUAD. Additionally, rescue assays uncovered that STARD13 depletion or miR-301b-3p overexpression could countervail the restraining effect of LINC01089 knockdown on the phenotypes of LUAD cells. Conclusion LINC01089 served as a tumor-inhibitor in LUAD by targeting miR-301b-3p/STARD13 axis, providing an innovative insight into LUAD therapies. Trial registration Not applicable.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


RSC Advances ◽  
2018 ◽  
Vol 8 (54) ◽  
pp. 31019-31027
Author(s):  
Jiude Qi ◽  
Yanfeng Chu ◽  
Guangyan Zhang ◽  
Hongjun Li ◽  
Dongdong Yang ◽  
...  

Long non-coding RNA-metastasis-associated lung adenocarcinoma transcript (LncR-MALAT) is highly expressed in a variety of tumors, which can affect the progression of tumor cells.


2020 ◽  
Author(s):  
Jianwei Zhang ◽  
Zhongmin Lan ◽  
Guotong Qiu ◽  
Hu Ren ◽  
Yajie Zhao ◽  
...  

Abstract Background: Pancreatic cancer is a malignant tumor with high mortality. Acidic nuclear phosphoprotein 32 family member E (ANP32E), a specific H2A.Z chaperone, has been shown to contribute to breast cancer development. However, the significance of ANP32E in pancreatic cancer is poorly understood. This study aimed to investigate the role of ANP32E in pancreatic cancer. Methods: The expression of ANP32E in 179 pancreatic cancer tissues and 171 normal tissues, and the correlation between ANP32E expression and patients’ survival were analyzed from the TCGA database. ANP32E was over-expressed and silenced using lentivirus. siRNA was used to knock down β-catenin. CCK8, colony formation, cell cycle and transwell experiments were performed to determine cell proliferation and migration. qRT-PCR and Western blot were conducted to detect mRNA and protein expression. Results: ANP32E was up-regulated in pancreatic cancer tissues and cells. Up-regulation of ANP32E predicted poor prognosis in pancreatic cancer patients. Lentivirus-mediated knockdown of ANP32E suppressed the proliferation, colony growth and migration of PANC1 and MIA cells. By contrast, ANP32E over-expression promoted the proliferation and migration of both cells. In addition, ANP32E accelerated the cell cycle progression in PANC1 and MIA cells. Molecular experiments showed that ANP32E activated β-catenin/cyclin D1 signaling. Silencing of β-catenin reduced cell proliferation and migration in ANP32E over-expressed cells. Conclusion: Our results propose that ANP32E functions as an oncogene in pancreatic cancer via activating β-catenin.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhidong Zhao ◽  
Xianju Qin

Abstract Colon adenocarcinoma (COAD) is the most common type of gastrointestinal cancer and is still the third leading cause of cancer-related mortality worldwide. Therefore, finding new and promising drugs to eradicate cancer may be a feasible method to treat COAD patients. Cys2-His2 zinc finger proteins (ZFPs) is one of the largest transcription factor family and many of them are highly involved in regulation of cell differentiation, proliferation, apoptosis, and neoplastic transformation. In this study, we identified a tumor-inhibiting factor, ZNF549, which expressed lowly in COAD tissues and COAD cell lines (HT29, HCT116, SW480, LoVo, and SW620). Overexpression of ZNF549 inhibit the ability of COAD cell proliferation and migration. On the contrary, decreasing the ZNF549 expression level promote the ability of COAD cell proliferation and migration. Through bioinformatics analysis, we found that ZNF549 was a potential target of hsa-miR-708-5p (miR-708-5p). Furthermore, we verified the possibility of miR-708-5p targeting the ZNF549 gene, and miR-708-5p inhibited the expression of ZNF549 by luciferase reporter assays, qRT-PCR and western blot assays. Moreover, the relationship between miR-708-5p and phosphatidylinositol 3-kinase/AKt (PI3K/AKt) signal pathway was elucidated. Overexpression and inhibition of miR-708-5p resulted in increased and decreased expression of p-AKt and p-PI3K in HCT116 cells, respectively. RT-qPCR and western blot assays results demonstrated that miR-708-5p regulated COAD cells development by promoting the process of Epithelial-mesenchymal transition (EMT) through PI3K/AKt signaling pathway. In summary, our findings demonstrated that ZNF549, the target gene of miR-708-5p, functions as a tumor suppressor to inhibit COAD cell lines proliferation and migration through regulate the PI3K/AKt signal pathway.


2018 ◽  
Vol 47 (5) ◽  
pp. 2097-2108 ◽  
Author(s):  
Wanfu Men ◽  
Wenya Li ◽  
Jungang Zhao ◽  
Yu Li

Background/Aims: TNF-α receptor-associated factor (TRAF)-interacting protein with a forkhead-associated (FHA) domain (TIFA) may mediate the impact of TRAF on the development of lung cancer. The current study was conducted to investigate the expression of TIFA in lung adenocarcinoma and its potential role in the regulation of cancer cell proliferation and migration, and its influence on patient survival. Methods: Specimens of lung adenocarcinoma tissues and their adjacent normal lung tissues were obtained from 116 patients who underwent surgical resection of lung cancer. The expression of TIFA in the lung tissues was examined by immunohistochemistry, immunoblotting, and real-time RT-PCR in four different lung cancer cell lines and one normal bronchial epithelial cell line (BEAS-2B). TIFA was silenced by RNAi technique, and cell proliferation was then assessed by the CCK8 method. Furthermore, cell migration was determined by wound-healing trans-well and wound-healing migration assays. Additionally, cell-cycle arrest and apoptosis were assessed by flow cytometry analysis. Results: TIFA was positively detected in 63 (54.3%) out of 116 lung adenocarcinoma specimens, which was significantly higher than the respective rate established in normal tissues adjacent to the tumor (30.1%, p < 0.05). The overall survival rate was significantly lower in the patients with positive TIFA expression than that in the patients with negative TIFA expression (p < 0.05). TIFA was also highly expressed in the lung cancer cell lines (H1299, H1975, and HCC827) tested. It is noteworthy that siRNA suppressed the expression of TIFA, which contributed to the attenuation of cell proliferation and migration, but promoted cell-cycle arrest and apoptosis. Furthermore, the silencing of TIFA caused upregulation of p53, p21, and cleaved-caspase-3, but downregulation of Bcl-2, cyclin D1, and CDK4, as well as phosphorylation of IKKß, IκB, and p65. Conclusions: TIFA may serve as a biomarker in the prediction of lung adenocarcinoma. Furthermore, TIFA may modulate lung cancer cell survival and proliferation through regulating the synthesis of apoptosis-associated proteins.


Sign in / Sign up

Export Citation Format

Share Document