scholarly journals Natural variation in stress response induced by low CO2 in Arabidopsis thaliana

2020 ◽  
Vol 15 (1) ◽  
pp. 923-938
Author(s):  
Chunxia Wu ◽  
Yulou Sun ◽  
Guang Yang ◽  
Li Li ◽  
Wei Sun ◽  
...  

AbstractVariation in atmospheric carbon dioxide (CO2) concentration can dictate plant growth and development and shape plant evolution. For paired populations of 31 Arabidopsis accessions, respectively, grown under 100 or 380 ppm CO2, we compared phenotypic traits related to vegetative growth and flowering time. Four accessions showed the least variation in measured growth traits between 100 ppm CO2 and 380 ppm CO2 conditions, though all accessions exhibited a dwarf stature with reduced biomass under low CO2. Our comparison of accessions also incorporated the altitude (indicated in meters) above sea level at which they were originally collected. Notably, An-1 (50 m), Est (50 m), Ws-0 (150 m), and Ler-0 (600 m) showed the least differences (lower decrease or increase) between treatments in flowering time, rosette leaf number, specific leaf weight, stomatal density, and less negative δ13C values. When variations for all traits and seedset were considered together, Ws-0 exhibited the least change between treatments. Our results showed that physiological and phenotypic responses to low CO2 varied among these accessions and did not correlate linearly with altitude, thus suggesting that slower growth or smaller stature under ambient CO2 may potentially belie a fitness advantage for sustainable growth under low CO2 availability.

Weed Science ◽  
2021 ◽  
pp. 1-37
Author(s):  
Leonard Bonilla Piveta ◽  
José Alberto Noldin ◽  
Nilda Roma-Burgos ◽  
Vívian Ebeling Viana ◽  
Lariza Benedetti ◽  
...  

Abstract Weedy rice (Oryza sativa L.) is one of the most troublesome weeds affecting rice (Oryza sativa L.) production in many countries. Weedy rice control is difficult in rice fields because the weed and crop are phenotypically and morphologically similar. Weedy rice can be a source of genetic diversity to cultivated rice. Thus, this study aimed to characterize the morphological diversity of weedy rice in Southern Brazil. Qualitative and quantitative traits of 249 accessions from eight rice growing mesoregions in Rio Grande do Sul (RS) and Santa Catarina (SC) states were analyzed. For each accession, 24 morphological descriptors (14 qualitative and 10 quantitative) were evaluated. All the 249 accessions from RS and SC are of indica lineage. Considering all the phenotypic traits evaluated, the accessions separated into 14 distinct groups. One of the largest groups consisted of plants that were predominantly tall and with green leaves, intermediate shattering, and variable in flowering time. Distinct subgroups exist within larger clusters, showing discernable phenotypic diversity within the main clusters. The variability in flowering time was high (77 to 110 d after emergence), indicating high potential for flowering synchrony with rice cultivars and, consequently, gene flow. This indicates the need to remove escapes when planting herbicide-resistant rice. Thus, weedy rice populations in Southern Brazil are highly diverse and this diversity could result in variable response to weed management.


2016 ◽  
Vol 65 (1) ◽  
pp. 71-82 ◽  
Author(s):  
M.K. Pagliarini ◽  
W.S. Kieras ◽  
J.P. Moreira ◽  
V.A. Sousa ◽  
J.Y. Shimizu ◽  
...  

AbstractThe study was conducted to estimate the stability, adaptability, productivity and genetic parameters in Slash pine second-generation half-sib families, considering phenotypic traits in early age. Forty-four families from a first generation seed orchard in Colombo-PR, Brazil, were used in this study. Two progenies tests were established in a randomized complete block design. The first test was implemented in March 2009 in Ribeirão Branco, São Paulo state, containing 40 blocks, one tree per plot, 44 treatments (progenies) and 6 controls. Another test was implemented in Ponta Grossa, Paraná state, using the same experimental design and number of plants per plot, and with 24 treatments, 32 blocks. The growth traits evaluated were total height, diameter at breast height (dbh) and wood volume, within five years. The form traits evaluated were stem form, branch thickness, branch angle, number of branches, fork and fox tail five years after planting. Deviance analysis and estimates of stability, adaptability, productivity and genetic parameters were performed using the methods of best linear unbiased predictor (BLUP) and residual maximum likelihood (REML). There was significant variation among progenies for growth and form traits. Considerable genetic variation was detected mainly for wood volume. High coefficients of genetic variation and heritability showed low environmental influence on phenotypic variation, which is important for the prediction of genetic gain by selection. Crosses between different progenies individuals groups will be prioritized for obtaining heterotics genotypes and increase the probability of obtaining high specific combining ability.


2019 ◽  
Vol 50 (1) ◽  
pp. 477-502 ◽  
Author(s):  
Anton Pauw

Nectarivorous birds and bird-pollinated plants are linked by a network of interactions. Here I ask how these interactions influence evolution and community composition. I find near complete evidence for the effect of birds on plant evolution. Experiments show the process in action—birds select among floral phenotypes in a population—and comparative studies find the resulting pattern—bird-pollinated species have long-tubed, red flowers with large nectar volumes. Speciation is accomplished in one “magical” step when adaptation for bird pollination brings about divergent morphology and reproductive isolation. In contrast, evidence that plants drive bird evolution is fragmentary. Studies of selection on population-level variation are lacking, but the resulting pattern is clear—nectarivorous birds have evolved a remarkable number of times and often have long bills and brush-tipped or tubular tongues. At the level of the ecological guild, birds select among plant species via an effect on seed set and thus determine plant community composition. Plants simultaneously influence the relative fitness of bird species and thus determine the composition of the bird guild. Interaction partners may give one guild member a constant fitness advantage, resulting in competitive exclusion and community change, or may act as limiting resources that depress the fitness of frequent species, thus stabilizing community composition and allowing the coexistence of diversity within bird and plant guilds.


2017 ◽  
Vol 44 (8) ◽  
pp. 809
Author(s):  
Kushal Kumar Baruah ◽  
Ashmita Bharali ◽  
Aninda Mazumdar ◽  
Gulshan Jha

Biotic carbon (C) sequestration is currently being considered as a viable option for mitigating atmospheric carbon dioxide (CO2) emission, in which photosynthesis plays a significant role. A field experiment was conducted between 2013 and 2015 to investigate the efficiency of seven modern wheat varieties for CO2 fixation, C partitioning, δ13C fractionation in the leaves, and grain yield. A strong correlation between flag leaf photosynthesis and stomatal density (r = 0.891) was detected. Photosynthetic efficiency was highest in the variety WH-1021 (28.93 µmol m–2 s–1). Grain yield was influenced by biomass accumulation in the heads and these were significantly correlated (r = 0.530). Our results show that upregulated biomass partitioning to the developing kernels of wheat was inversely proportional to biomass accumulation in the roots, and led to a higher grain yield. These results led us to conclude that identification of a wheat genotype like WH-1021 followed by WH-1080 and WH-711, with higher isotopic discrimination in the flag leaves, stomatal densities, water use and photosynthetic efficiencies along with higher grain yield, can contribute to sustainable agriculture in future climate change situation in India. A yield increment of 9–48% was recorded in WH-1021 over other six tested wheat varieties.


2012 ◽  
Vol 5 (12) ◽  
pp. 3109-3117 ◽  
Author(s):  
G. W. Brailsford ◽  
B. B. Stephens ◽  
A. J. Gomez ◽  
K. Riedel ◽  
S. E. Mikaloff Fletcher ◽  
...  

Abstract. We present descriptions of the in situ instrumentation, calibration procedures, intercomparison efforts, and data filtering methods used in a 39-yr record of continuous atmospheric carbon dioxide (CO2) observations made at Baring Head, New Zealand. Located on the southern coast of the North Island, Baring Head is exposed to extended periods of strong air flow from the south with minimal terrestrial influence resulting in low CO2 variability. The site is therefore well suited for sampling air masses that are representative of the Southern Ocean region. Instrumental precision is better than 0.015 ppm (1-σ) on 1-Hz values. Comparisons to over 600 co-located flask samples, as well as laboratory based flask and cylinder comparison exercises, suggest that over recent decades compatibility with respect to the Scripps Institution of Oceanography (SIO) and World Meteorological Organisation (WMO) CO2 scales has been 0.3 ppm or better.


2021 ◽  
Author(s):  
Franziska Fichtner ◽  
Francois F Barbier ◽  
Stephanie C Kerr ◽  
Caitlin Dudley ◽  
Pilar Cubas ◽  
...  

Shoot branching is a complex mechanism in which secondary shoots grow from buds that are initiated from meristems established in leaf axils. The model plant Arabidopsis thaliana has a rosette leaf growth pattern in the vegetative stage. After flowering initiation, the main stem starts to elongate with the top leaf primordia developing into cauline leaves. Meristems in arabidopsis are initiated in the axils of rosette or cauline leaves, giving rise to rosette or cauline buds, respectively. Plasticity in the process of shoot branching is regulated by resource and nutrient availability as well as by plant hormones. However, few studies have attempted to test whether cauline and rosette branching are subject to the same plasticity. Here, we addressed this question by phenotyping cauline and rosette branching in three arabidopsis ecotypes and several arabidopsis mutants with varied shoot architectures. Our results show that there is no negative correlation between cauline and rosette branch numbers in arabidopsis, demonstrating that there is no trade-off between cauline and rosette bud outgrowth. Through investigation of the altered branching pattern of flowering pathway mutants and arabidopsis ecotypes grown in various photoperiods and light regimes, we further elucidated that the number of cauline branches is closely related to flowering time. The number or rosette branches has an enormous plasticity compared with cauline branches and is influenced by genetic background, flowering time, light intensity and temperature. Our data reveal different plasticity in the regulation of branching at rosette and cauline nodes and promote a framework for future branching analyses.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1883
Author(s):  
Mingli Wu ◽  
Haidong Zhao ◽  
Xiaoqin Tang ◽  
Qi Li ◽  
Xiaohua Yi ◽  
...  

The GH growth axis plays an important role in the growth and development of animals and runs through the whole life of animals. Many studies have shown that molecular mutations in key genes of the GH axis will affect the growth and development of animals. The purpose of this study was to explore the distribution characteristics of InDels of GHR, GHRH, and GHRHR in seven Chinese sheep populations, and to further explore the relationship between InDels and sheep growth traits. GHR showed high variation in Chinese sheep, and GHR-53 showed the highest minimum allele frequency (MAF). There was only one InDel mutation site in both GHRH and GHRHR. The genotype frequencies of Hu sheep (HS), Tong sheep (TS), and Lanzhou fat-tail sheep (LFTS) were quite different from other breeds. The association between GHR, GHRH, and GHRHR InDels and body size traits in seven varieties were analyzed. The results showed that there was no significant relationship between GHRH and body size traits in the seven sheep populations. There was a positive association between GHR-21 and hip height of LFSH (p < 0.05). GHR-43 reduced body height and chest depth of Small tail han sheep (STHS) and hip width of TS. GHR-44 significantly affected the body weight of HS, the body height of STHS and the head depth of TS. GHR-53 significantly reduced cannon girth of HS, chest of STHS and forehead width of TS. GHRHR-2 significantly reduced the body weight of LFHS. To sum up, this study revealed the effects of GHR, GHRH, and GHRHR InDels on sheep phenotypic traits, which indicated their potential application prospects in the genetic improvement of mutton sheep.


Botany ◽  
2014 ◽  
Vol 92 (11) ◽  
pp. 805-814 ◽  
Author(s):  
Erin M. Borgman ◽  
Anna W. Schoettle ◽  
Amy L. Angert

Maternal effects, the effect of the maternal environment during development on offspring growth, can complicate the interpretation of common garden studies. Growing one or more generations in a common environment can help minimize maternal effects, but is often not practical with long-lived species. In Pinus aristata Engelm. and Pinus flexilis James, we assessed maternal effects by growing offspring sourced over multiple years from the same mother trees, comparing growth traits between source years. Additionally, we explored the effect of maternal environment on seed characteristics by collecting five twig clippings from each mother tree and measuring characteristics indicative of the relative vigor of the tree during each seed source year. The effect of year was significant for twig growth characteristics, seed size, and seedling performance. For both species, there were significant relationships between the relative inter-annual (RIA) variation in seed mass and the RIA variation in numerous seedling traits including cotyledon length, seedling total dry mass, and needle length. Variation in seed mass was not predicted by yearly variation in the maternal plant’s phenotypic traits. These results support the hypothesis that maternal effects translate into variation in early seedling growth and suggest possibilities to statistically account for them in common garden studies involving long-lived species.


Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Ivana Romšáková ◽  
Elena Foffová ◽  
Jaroslav Kmeť ◽  
Roman Longauer ◽  
Marian Pacalaj ◽  
...  

AbstractVariation of sequences of six EST-derived markers was investigated in three Norway spruce (Picea abies [L.] Karst.) provenances originating from different altitudes growing at two contrasting trial plots in Slovakia (Veľký Lom 450 m a.s.l., Mútne-Zákamenné 1,250 m a.s.l.) within a spin-off experiment of the IUFRO 1964/68 Inventory Provenance Experiment with Norway spruce. Single nucleotide polymorphisms (SNP) were identified and differences in allele frequencies at polymorphic sites were tested against altitude or associated with physiological and growth traits (chlorophyll a fluorescence, frost resistance, height, diameter, budburst phenology).Overall, 5.1% of sites (190 in total) were polymorphic in the studied material. Although there were no differences in nucleotide diversity among provenances, the differentiation was highly significant (the overall between-population variance component assessed by the AMOVA based on both extreme populations P1 and P49 was 6.53%). Only 4 polymorphic sites differed significantly between populations after Bonferroni correction. Four sites showed significant association with phenotypic traits (breast-height diameter, stem volume, chlorophyll fluorescence). In contrast to earlier analyses of growth and physiological traits based on the same material, significant associations with polymorphic sites indicate the effect of local adaptation.


Sign in / Sign up

Export Citation Format

Share Document