scholarly journals Long noncoding RNA FTX ameliorates hydrogen peroxide-induced cardiomyocyte injury by regulating the miR-150/KLF13 axis

2020 ◽  
Vol 15 (1) ◽  
pp. 1000-1012
Author(s):  
Yamin Zhang ◽  
Xiaoying Fan ◽  
Hua Yang

AbstractBackgroundMyocardial reperfusion is an effective therapy for acute myocardial infarction (AMI). However, ischemia/reperfusion (I/R) injury following myocardial reperfusion is a significant limitation for AMI treatment. Five prime to Xist (FTX) was recognized as a biomarker of multiple diseases, including heart disease. However, the molecular mechanism of FTX in I/R injury is unclear.MethodsCell viability was evaluated by using cell counting kit-8 (CCK-8) assay. Apoptosis was analyzed by using a caspase-3 activity detection kit and flow cytometry. The expression of FTX, microRNA (miR)-150, and Kruppel-like factor 13 (KLF13) was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The interaction of miR-150 and FTX or KLF13 was confirmed by a dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Protein expression of KLF13 was examined by Western blot. The role of FTX was detected in I/R-injured heart tissues in vivo.ResultsHydrogen peroxide (H2O2) induced cardiomyocyte injury by decreasing cell viability and expediting cell apoptosis. However, FTX alleviated cardiomyocyte injury by promoting cell proliferation and restricting cell apoptosis of H9C2 cells that were treated with H2O2. In addition, we discovered that FTX directly interacted with miR-150, while KLF13 was a target of miR-150. Rescue experiments showed that miR-150 neutralized the FTX-mediated promotion of cell progression and restriction of cell apoptosis in H9C2 cells treated with H2O2. KLF13 knockdown restored the effect of miR-150 on increased proliferation and decrease in apoptosis in H2O2-treated cardiomyocytes. Furthermore, FTX enhanced the expression of KLF13 protein through interaction with miR-150. Upregulation of FTX repressed apoptosis in I/R-injured heart tissues in vivo.ConclusionFTX relieves H2O2-induced cardiomyocyte injury by increasing KLF13 expression via depletion of miR-150, thus providing a novel therapeutic target for the alleviation of I/R injury.

2020 ◽  
Vol 19 ◽  
pp. 153303382092850 ◽  
Author(s):  
Xiaohong Zhang ◽  
Yinman Feng ◽  
Yanli Gao ◽  
Jun Hu

Many long noncoding RNAs reportedly have tumor suppressive roles or are oncogenic in esophageal cancer. We have previously performed a chip-based expression analysis of primary esophageal cancer tissues and found that the expression of LINC00634 in these tissues was higher than that in nontumor tissues. Quantitative real-time–polymerase chain reaction, cell counting kit-8, flow cytometry, caspase3/7 assay, dual-luciferase reporter assay, and restore assay were used to detect the proliferative and apoptotic effects of LINC00634 in esophageal cancer cells. The results showed that the expression of LINC00634 in these tissues was higher than that in nontumor tissues and associated with tumor–node–metastasis (TNM) stage of patients. Knockdown of LINC00634 decreased cell viability and increased cell apoptosis levels in EC9706 and EC1 cells. LINC00634 could target Bcl2L1 through miR-342-3p. In this study, we show that LINC00634 is upregulated in esophageal cancer. We also show that the knockdown of LINC00634 decreased cell viability and increased cell apoptosis levels in EC9706 and EC1 cells through the miR-342-3p/Bcl2L1 axis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jipeng Lu ◽  
Zhongxiong Wu ◽  
Ying Xiong

Abstract Background Osteoarthritis (OA) is a joint disease characterized via destruction of cartilage. Chondrocyte damage is associated with cartilage destruction during OA. Long noncoding RNAs (lncRNAs) are implicated in the regulation of chondrocyte damage in OA progression. This study aims to investigate the role and underlying mechanism of lncRNA homeobox antisense intergenic RNA (HOTAIR) in OA chondrocyte injury. Methods Twenty-three OA patients and healthy controls without OA were recruited. Chondrocytes were isolated from OA cartilage tissues. HOTAIR, microRNA-107 (miR-107) and C-X-C motif chemokine ligand 12 (CXCL12) levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell proliferation, apoptosis and extracellular matrix (ECM) degradation were measured using cell counting kit-8, flow cytometry and western blot. The target interaction was explored by bioinformatics, luciferase reporter and RNA immunoprecipitation assays. Results HOTAIR expression was enhanced, and miR-107 level was reduced in OA cartilage samples. HOTAIR overexpression inhibited cell proliferation, but induced cell apoptosis and ECM degradation in chondrocytes. HOTAIR knockdown caused an opposite effect. MiR-107 was sponged and inhibited via HOTAIR, and knockdown of miR-107 mitigated the effect of HOTAIR silence on chondrocyte injury. CXCL12 was targeted by miR-107. CXCL12 overexpression attenuated the roles of miR-107 overexpression or HOTAIR knockdown in the proliferation, apoptosis and ECM degradation. CXCL12 expression was decreased by HOTAIR silence, and restored by knockdown of miR-107. Conclusion HOTAIR knockdown promoted chondrocyte proliferation, but inhibited cell apoptosis and ECM degradation in OA chondrocytes by regulating the miR-107/CXCL12 axis.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cuizhi Li ◽  
Huafeng Song ◽  
Chunlin Chen ◽  
Shaoxian Chen ◽  
Qiyu Zhang ◽  
...  

Objective: Myocardial ischemia reperfusion (I/R) damage is a life-threatening vascular emergency after myocardial infarction. Here, we observed the cardioprotective effect of long non-coding RNA (lncRNA) PVT1 knockdown against myocardial I/R damage.Methods: This study constructed a myocardial I/R-induced mouse model and a hypoxia/reoxygenation (H/R)-treated H9C2 cells. PVT1 expression was examined via RT-qPCR. After silencing PVT1 via shRNA against PVT1, H&E, and Masson staining was performed to observe myocardial I/R damage. Indicators of myocardial injury including cTnI, LDH, BNP, and CK-MB were examined by ELISA. Inflammatory factors (TNF-α, IL-1β, and IL-6), Gasdermin D (GSDMD), and Caspase1 were detected via RT-qPCR, western blot, immunohistochemistry, or immunofluorescence. Furthermore, CCK-8 and flow cytometry were presented for detecting cell viability and apoptosis.Results: LncRNA PVT1 was markedly up-regulated in myocardial I/R tissue specimens as well as H/R-induced H9C2 cells. Silencing PVT1 significantly lowered serum levels of cTnI, LDH, BNP, and CK-MB in myocardial I/R mice. H&E and Masson staining showed that silencing PVT1 alleviated myocardial I/R injury. PVT1 knockdown significantly lowered the production and release of inflammatory factors as well as inhibited the expression of GSDMD-N and Caspase1 in myocardial I/R tissue specimens as well as H/R-induced H9C2 cells. Moreover, silencing PVT1 facilitated cell viability and induced apoptosis of H/R-treated H9C2 cells.Conclusion: Our findings demonstrated that silencing PVT1 could alleviate myocardial I/R damage through suppressing GSDMD-mediated pyroptosis in vivo and in vitro. Thus, PVT1 knockdown may offer an alternative therapeutic strategy against myocardial I/R damage.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuanliang Liu ◽  
Jieqiong Zhang ◽  
Xuejie Lun ◽  
Lei Li

Objective. To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. Methods. PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. Results. PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically ( P < 0.05 ). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. Conclusion. Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Liyuan Zou ◽  
Xiaokun Ma ◽  
Shuo Lin ◽  
Bingyuan Wu ◽  
Yang Chen ◽  
...  

Abstract Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) plays an important role in protection of ischemia–reperfusion (I/R) injury in brain and liver. However, role of MEG3 in myocardial I/R injury remains unclear. Here, the role of MEG3 in protection of myocardial I/R injury and its association with microRNA-7-5p (miR-7-5p) was investigated using rat cardiac I/R model and myocardial I/R cell model. Our results showed that MEG3 was significantly up-regulated and miR-7-5p was significantly down-regulated after I/R. Following I/R, the levels of intact PARP and intact caspase-3 were reduced, while the cleaved fragments of PARP and caspase-3 were increased. TUNEL assay showed an increase in cardiomyocyte apoptosis after I/R. The levels of I/R-induced creatine kinase (CK) and lactate dehydrogenase (LDH) were inhibited by knockdown of MEG3 (siMEG3). SiMEG3 increased cell proliferation and inhibited cell apoptosis after I/R. In contrast, overexpression of MEG3 increased the I/R-induced CK and LDH activities and cell apoptosis and decreased cell proliferation. The dual-luciferase reporter system showed a direct binding of MEG3 to miR-7-5p. The level of miR-7-5p was negatively associated with the change in levels of MEG3 in H9c2 cells. The levels of intact RARP1 and caspase-3 were significantly increased by knockdown of MEG3. Co-transfection of miR-7-5p inhibitor with siMEG3 activates CK and LDH, significantly decreased cell proliferation, increased cell apoptosis, and decreased intact poly(ADP-ribose) polymerase 1 (PARP1) and caspase-3. In summary, down-regulation of MEG3 protects myocardial cells against I/R-induced apoptosis through miR-7-5p/PARP1 pathway, which might provide a new therapeutic target for treatment of myocardial I/R injury.


Author(s):  
Yipei Jing ◽  
Xueke Jiang ◽  
Li Lei ◽  
Meixi Peng ◽  
Jun Ren ◽  
...  

Abstract Background Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1), which displays a distinct long noncoding RNA (lncRNA) expression profile, has been defined as a unique subgroup in the new classification of myeloid neoplasms. However, the biological roles of key lncRNAs in the development of NPM1-mutated AML are currently unclear. Here, we aimed to investigate the functional and mechanistic roles of the lncRNA HOTAIRM1 in NPM1-mutated AML. Methods The expression of HOTAIRM1 was analyzed with a public database and further determined by qRT-PCR in NPM1-mutated AML samples and cell lines. The cause of upregulated HOTAIRM1 expression was investigated by luciferase reporter, chromatin immunoprecipitation and ubiquitination assays. The functional role of HOTAIRM1 in autophagy and proliferation was evaluated using western blot analysis, immunofluorescence staining, a Cell Counting Kit-8 (CCK-8) assay, a 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, flow cytometric analyses and animal studies. The action mechanism of HOTAIRM1 was explored through RNA fluorescence in situ hybridization, RNA pulldown and RNA immunoprecipitation assays. Results HOTAIRM1 was highly expressed in NPM1-mutated AML. High HOTAIRM1 expression was induced in part by mutant NPM1 via KLF5-dependent transcriptional regulation. Importantly, HOTAIRM1 promoted autophagy and proliferation both in vitro and in vivo. Mechanistic investigations demonstrated that nuclear HOTAIRM1 promoted EGR1 degradation by serving as a scaffold to facilitate MDM2-EGR1 complex formation, while cytoplasmic HOTAIRM1 acted as a sponge for miR-152-3p to increase ULK3 expression. Conclusions Taken together, our findings identify two oncogenic regulatory axes in NPM1-mutated AML centered on HOTAIRM1: one involving EGR1 and MDM2 in the nucleus and the other involving the miR-152-3p/ULK3 axis in the cytoplasm. Our study indicates that HOTAIRM1 may be a promising therapeutic target for this distinct leukemia subtype.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hong Liang ◽  
Qiuyan Zhao ◽  
Zhonglin Zhu ◽  
Chao Zhang ◽  
Hui Zhang

Abstract Background Long noncoding RNAs (lncRNAs) have been elucidated to participate in the development and progression of various cancers. In this study, we aimed to explore the underlying functions and mechanisms of LINC00958 in colorectal cancer. Methods LINC00958 expression in colorectal cancer tissues was examined by qRT-PCR. The correlations between LINC00958 expression and clinical characteristics and prognosis were evaluated. The biological functions of LINC00958 were detected by CCK-8, MTT, colony formation and flow cytometric analyses. RNA pulldown, RIP and luciferase reporter assays were used to confirm the regulatory effects of LINC00958 on miR-422a. Rescue experiments were performed to detect the effects of miR-422a on the roles of LINC00958. Results LINC00958 was upregulated in colorectal cancer tissues and cell lines. High LINC00958 levels were positively associated with T stage and predicted poor prognosis. Cell experiments showed that LINC00958 promoted cell proliferation and suppressed apoptosis and sensitivity to radiotherapy in vitro and promoted tumor growth in vivo. Bioinformatics analysis predicted the binding site of miR-422a on LINC00958. Mechanistically, RNA pulldown, RIP and luciferase reporter assays demonstrated that LINC00958 specifically targeted miR-422a. In addition, we found that miR-422a suppressed MAPK1 expression by directly binding to the 3’-UTR of MAPK1, thereby inhibiting cell proliferation and enhancing cell apoptosis and radiosensitivity. Furthermore, miR-422a rescued the roles of LINC00958 in promoting MAPK1 expression and cell proliferation and decreasing cell apoptosis and radiosensitivity. Conclusions LINC00958 promoted MAPK1 expression and cell proliferation and suppressed cell apoptosis and radiosensitivity by targeting miR-422a, which suggests that it is a potential biomarker for the prognosis and treatment of colorectal cancer.


2020 ◽  
Author(s):  
Yubin Feng ◽  
shuang Hu ◽  
lanlan Li ◽  
xiaoqing Peng ◽  
Feihu Chen

Abstract BackgroundLong noncoding RNAs (lncRNAs) plays an important role in the development of physiology and pathology. Many reports have shown that LncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) is a carcinogen and plays an important role in many tumors, but there are few reports on its role in Acute myeloid leukemia (AML). MethodsThe expression of HOXA-AS2 in AML cell line was detected by qRT-PCR. AML cases from the public database (GEPIA) were also included in this study. Cell counting kit-8 (CCK-8) assay, flow cytometry, immunofluorescence and Western blot were used to detect the role of HOXA-AS2 in AML cells. Luciferase reporter gene detection, RIP, RNA pull-down and RNA-ChIP detection were used to demonstrate the molecular biological mechanism of HOXA-AS2 in AML.ResultsOur results show that HOXA-AS2 was upregulated in AML cell lines and tissues, and the overexpression of HOXA-AS2 is negatively correlated with the survival of patients. Silencing HOXA-AS2 can inhibit the proliferation and induce differentiation of AML cells in vitro and in vivo. After overexpressing HOXA-AS2, it will show the opposite result. Moreover, more in-depth mechanism studies show that HOXA-AS2 exerts its carcinogenicity mainly by binding with the epigenetic inhibitor Enhancer of zeste homolog 2 (EZH2) and then inhibiting the expression of Large Tumor Suppressor 2 (LATS2). ConclusionsTaken together, our results highlight the important role of HOXA-AS2 in AML, suggesting that HOXA-AS2 may be an effective therapeutic target for patients with AML.


Author(s):  
Chunling Zhao ◽  
Pingfen Zi ◽  
Degang Zhou

IntroductionOvarian cancer (OC) frequently occurs in postmenopausal women and it has higher mortality rate. Accumulating researches proved that long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) involved in the progression of chemoresistance in human OC. Here, the study aimed to investigate the partial molecular mechanism of OC chemoresistance.Material and methodsThe levels of NEAT1 and microRNA-320b (miR-320b) were measured by qRT-PCR. Western blot was carried out to determine the protein levels that used in this research. Cell viability was identified via Cell Counting Kit-8 (CCK-8). Transwell assay was employed to determine migration and invasion. The relationship between miR-320b and NEAT1 or MSI2 was clarified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pull down assay. Also, a murine xenograft assay was used to explore the effect of NEAT1 on cisplatin resistance in OC in vivo.ResultsThe level of NEAT1 was significantly increased in cisplatin resistant OC cell lines. Downregulation of NEAT1 enhanced cisplatin sensibility in OVCAR-3/DDP and HEY/DDP cells. Furthermore, miR-320b was a target of NEAT1, and the effects of knockdown of NEAT1 on the cell viability, IC50 of cisplatin, migration and invasion in OVCAR-3/DDP and HEY/DDP were restored by the inhibitor of miR-320. In addition, miR-320b directly targeted MSI2 to regulate cisplatin sensibility in cisplatin resistant OC cells. In addition, downregulation of NEAT1 decreased cisplatin resistance in OC in vivo.ConclusionsNEAT1 regulated cisplatin resistance through NEAT1/miR-320b/MSI2 axis in OC, which might offer a novel therapy target for the chemotherapy of OC.


Sign in / Sign up

Export Citation Format

Share Document