Remarks by Kevin D. Mohr

2020 ◽  
Vol 114 ◽  
pp. 11-22
Author(s):  
Kevin D. Mohr ◽  
Gabriela Alvarez Avila ◽  
Carlos Solé ◽  
Kasturi Das

The title of our panel promises to explore whether investor-state dispute settlement (ISDS) is a barrier, a facilitator, or neither regarding the global fight against climate change. This is an issue of urgent concern because there is a growing consensus that the world economy needs to transition away from fossil fuels aggressively to avoid the worst case climate scenarios, which would require a massive flow of investment out of fossil fuel production and into the production of renewable energy sources (RES). Broadly speaking, state policymakers have two sets of tools at their disposal to encourage that transition: (1) tools to encourage investment in RES (carrots); and (2) tools to discourage investment and hasten divestment in hydrocarbon production (sticks). One way to frame the question is whether the ISDS system—designed as it is to protect foreign investment in a largely policy-neutral way—acts more as a facilitator of carrot-side policies, more as a barrier to stick-side policies, or neither? Put somewhat differently, does a strong ISDS system that would facilitate RES investment necessarily cause regulatory chill of stick-side policies aimed at divestment from fossil fuels, or is there a way to harmonize these seemingly divergent goals?

2016 ◽  
Vol 23 (3) ◽  
pp. 377-386 ◽  
Author(s):  
Peter Burri

Abstract In spite of great progress in energy efficiency and in the development of renewable energy the world is likely to need significant amounts of fossil fuel throughout this century and beyond (the share of fossil fuels in the world mix has remained at about 86% of primary energy from 1990 to today). Gas, being the by far cleanest fossil fuel is the ideal bridging fuel to a world with predominantly renewable supplies. Thanks to the recent perfection of unconventional technologies there is no shortage of gas for this bridging function for at least the next 100-200 years. EASAC and several other European Institutions, notably the German Academy of Technical Sciences (acatech) have in the last few years carried out expert studies to assess the alleged environmental risks of unconventional hydrocarbon exploration and production. All these studies have, in agreement with other competent studies worldwide, come to the conclusion that there exists no scientific reason for a ban on hydraulic fracturing. With good practices, clear standards and adequate control the method causes no enhanced risks to the environment or the health of humans. Special attention has to be paid to the surface handling of drilling and fracking fluids. In Europe alone many thousand frac jobs have been carried out by the industry in the last 60 years without any severe accidents. The mishaps in North America have largely been the cause of unprofessional operations and human error. Especially in places with high air pollution, like many megacities of Asia, natural gas has to be seen as a unique chance to achieve a rapid improvement of the air quality and a significant reduction of CO2 emissions. This is also true for Europe where especially the use of domestic natural gas brings important benefits to the environment. The alternative to gas is in many regions of the world an increased consumption of coal, with all negative consequences.


Author(s):  
Steve Mohr ◽  
Jianliang Wang ◽  
James Ward ◽  
Damien Giurco

AbstractDetailed projections of the Former Soviet Union (FSU) fossil fuel production has been created. Russian production has been modelled at the region (oblast) level where possible. The projections were made using the Geologic Resource Supply-Demand Model (GeRS-DeMo). Low, Best Guess and High scenarios were created. FSU fossil fuels are projected to peak between 2027 and 2087 with the range due to spread of Ultimately Recoverable Resources (URR) values used. The Best Guess (BG) scenario anticipates FSU will peak in 2087 with production over 170 EJ per year. The FSU projections were combined with rest of the world projections (Mohr et al. 2015b), the emissions from the High scenario for the world are similar to the IPCC A1 AIM scenario.


Radiocarbon ◽  
2021 ◽  
pp. 1-9
Author(s):  
Túlio César Aguiar Silva ◽  
Carla Carvalho ◽  
Bruno Libardoni ◽  
Kita Macario ◽  
Felippe Braga de Lima ◽  
...  

ABSTRACT Fossil fuels are of utmost importance to the world we live in today. However, their use can cause major impacts on the environment, especially on water resources. In this regard, algae have been intensively used as a strategy for remediation and monitoring of environmental pollution due to its efficient absorption of contaminants. In this work, samples of seaweed collected in Niterói/RJ—contaminated with kerosene and diesel—were analyzed by radiocarbon (14C) accelerator mass spectrometry (AMS) and by n-alkane quantification with gas chromatography to evaluate bioaccumulation in function of the dosage of contaminants. The biogenic content measured by radiocarbon analysis resulted in 95.6% for algae contaminated with 10 mL of kerosene and 67.6% for algae contaminated with 10 mL of diesel. The maximum intensity of n-C17 n-alkane in algae with 5 mL, 10 mL, and 15 mL of diesel was 768.2, 1878.1, and 5699.2 ng.g-1, respectively. While the maximum concentration of n-C27 in algae with 5 mL, 10 mL and 15 mL of kerosene was 3.3, 35.9, and 150.3 ng.g-1. We concluded that, for both contaminants, their incorporation into algae increases as the contamination dosage increases, making this methodology an effective technique for monitoring and remediation of urban aquatic ecosystems.


Originally, coal was the main source of energy. It remains so throughout the 18th century during the period of the rapid industry development. Later on, oil and naphtha began to be used as energy sources and their usage expanded especially in 19th century. A special feature of the above mentioned fossil fuels is their long creation period – requiring millennia. They are a result of rotting of different plant and animal kinds. In comparison to the period of their formation, the period of their utilization is far shorter. In accordance with a number of existing statistics about 2050 year it may be talked about a depletion of the liquid fossil fuels, also, the world coal supplies are considered to last within the next 200 years. Therefore, the development of nuclear power engineering is considered to be one of the alternatives to generate energy. Recently, the nuclear power energy generation has been denied in many countries because of the risks associated with its generation and because these risks have been confirmed by serious accidents throughout the World. The storage of worked nuclear waste is also a problem and risky. The renewable energy sources are another possibility to generate energy.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 476
Author(s):  
Kevin J. Warner ◽  
Glenn A. Jones

China and India are not only the two most populous nations on Earth, they are also two of the most rapidly growing economies. Historically, economic and social development have been subsidized by cheap and abundant fossil-fuels. Climate change from fossil-fuel emissions has resulted in the need to reduce fossil-fuel emissions in order to avoid catastrophic warming. If climate goals are achieved, China and India will have been the first major economies to develop via renewable energy sources. In this article, we examine the factors of projected population growth, available fossil-fuel reserves, and renewable energy installations required to develop scenarios in which both China and India may increase per capita energy consumption while remaining on trach to meet ambitious climate goals. Here, we show that China and India will have to expand their renewable energy infrastructure at unprecedented rates in order to support both population growth and development goals. In the larger scope of the literature, we recommend community-based approaches to microgrid and cookstove development in both China and India.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Catalina Rus-Casas ◽  
Gabino Jiménez-Castillo ◽  
Juan Domingo Aguilar-Peña ◽  
Juan Ignacio Fernández-Carrasco ◽  
Francisco José Muñoz-Rodríguez

Currently, the increasing energy consumption around the world and the environmental impact resulting from the use of fossil fuel-based energy have promoted the use of renewable energy sources such as photovoltaic solar energy. The main characteristic of this type of energy is its unpredictability, as it depends on meteorological conditions. In this sense, monitoring the power generation of photovoltaic systems (PVS) in order to analyze their performance is becoming crucial. The purpose of this paper is to design a monitoring system for a residential photovoltaic self-consumption system which employs an Internet of Things (IoT) platform to estimate the photovoltaic power generation according to solar radiation and temperature. The architecture of the developed prototype will be described and the benefits of providing the use of IoT for monitoring will be highlighted, since all data collected by the data acquisition system (DAS) may be stored in the Cloud. The comparison of the results with those of other monitoring systems was very positive, with an uncertainty that complies with the IEC61724 standard.


2019 ◽  
Vol 139 ◽  
pp. 01008
Author(s):  
G.Zh. Allaeva

The article considers the role of “Uzbekneftegas” JSC in the economic development of the fuel and energy complex of the Republic in the face of increasing global economic globalization. The structure of the company, the priority areas for the development of JSC activities are shown. The perspective directions in hydrocarbon production are considered. The data on the production, use and distribution of natural gas by sectors of the economy of Uzbekistan are presented, and the structure of the energy balance of the Republic of Uzbekistan is shown.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 802 ◽  
Author(s):  
Manuel Antonio Díaz-Pérez ◽  
Juan Carlos Serrano-Ruiz

Concerns about depleting fossil fuels and global warming effects are pushing our society to search for new renewable sources of energy with the potential to substitute coal, natural gas, and petroleum. In this sense, biomass, the only renewable source of carbon available on Earth, is the perfect replacement for petroleum in producing renewable fuels. The aviation sector is responsible for a significant fraction of greenhouse gas emissions, and two billion barrels of petroleum are being consumed annually to produce the jet fuels required to transport people and goods around the world. Governments are pushing directives to replace fossil fuel-derived jet fuels with those derived from biomass. The present mini review is aimed to summarize the main technologies available today for converting biomass into liquid hydrocarbon fuels with a molecular weight and structure suitable for being used as aviation fuels. Particular emphasis will be placed on those routes involving heterogeneous catalysts.


1984 ◽  
Vol 48 (4) ◽  
pp. 95-103 ◽  
Author(s):  
William S. Bishop ◽  
John L Graham ◽  
Michael H. Jones

Despite its importance, the volatility of derived demand in industrial markets has not been studied by marketing scholars. Here we present a description of how fluctuations in demand for fossil fuels during recent years have caused precipitous changes in demand for turbomachinery equipment used to produce the fuels. This volatility in demand for fossil fuel production equipment is viewed both from the perspective of industry and that of five individual companies. Finally, a number of marketing strategies that can serve to dampen otherwise volatile sales performance are proposed for industrial firms.


2021 ◽  
Vol 33 (9) ◽  
pp. 1985-1999
Author(s):  
K.A.V. Miyuranga ◽  
D. Thilakarathne ◽  
Udara S.P.R. Arachchige ◽  
R.A. Jayasinghe ◽  
N.A. Weerasekara

As the world population and modernization increase, energy demand increases. One of the non-sustainable energy sources is fossil fuels. However, fossil fuel consumption raises various environmental and economic issues. Most of the studies focus on sustainable energy sources, which can replace fossil fuel dependence. Biodiesel is an alternative sustainable fuel for diesel power. Biodiesel can produce through the transesterification process. Since the catalyst plays a significant role in the biodiesel yield during a defined reaction time, the addition of a catalyst can increases the reaction rate. This article is outlined the several catalysts used by multiple researchers over the years to increase biodiesel yields.


Sign in / Sign up

Export Citation Format

Share Document