Effect of Vibration on Drawing and Annealing of High- Speed Spun Poly(trimethylene terephthalate) Fiber

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Kyoung Hou Kim ◽  
Yang Hun Lee ◽  
Hyun Hok Cho ◽  
Takeshi Kikutani

AbstractThe physical properties of poly(trimethylene terephthalate) (PTT) fibres were improved by means of vibration in the hot-drawing and annealing, which may be caused by the developed molecular packing. For high-speed spun PTT fibers, it was not until at the take-up speed of 3~4 km/min that the orientation induced crystallization started to emerge due to extensional stress occurred in spin line; confirmed from the results of WAXD and DSC. The PTT fibers obtained at the take-up speeds of 2~3 km/min and then drawn and annealed with vibration possessed low density and weight-crystallinity, but their birefringence was especially high. Moreover, the estimation of both refractive index parallel and normal directions to fiber axis using the interference microscopy showed that the refractive index parallel to the fiber axis was very high, which enhanced the mechanical properties of PTT fiber. Accordingly, the well-oriented chains along the fiber axis allow the PTT fiber to have better physical property such as elastic recovery although the PTT fiber has low density and crystallinity compared to PET and PBT. In effect, the PTT fiber possesses lower birefringence of over 10 times than those of PET and PBT due to its chain conformational characteristics. Therefore, we do suggest that the structural assessment against the subsequent mechanical properties according to various processes in the PTT fiber is preferred to be estimated through the respective refractive indices of parallel and normal to the fiber axis rather than conventional methods such as birefringence, crystallinity, and crystalline orientation.

A ray-tracing analysis for calculating, by means of interference microscope data, the radial distribution of refractive index, n ( r ), for fibres of round cross section has been formulated, solved, tested and used to determine n ( r ) for high-speed direct-spun polyethylene terephthalate (PET) fibres. The formulation was based on work by Kahl & Mylin (1965) originally performed to explore the radial density profiles in cylindrically symmetrical explosions. The equations were formulated with proper boundary conditions at the fibre surface, correcting a fundamental error that has caused problems for 20 years. This correct boundary condition unfortunately made it impossible to invert, as had been done in all previous work, the resulting integral equations, which consequently were solved by a nonlinear least-squares approximation. The analysis corrected a serious problem noted in the literature: namely, that the refractive index profile obtained for a particular fibre depended on the refractive index of the immersion liquid used to make the measurement. Refractive index profiles observed for PET fibres produced by high-speed direct spinning had concave-down curvature, the opposite of expectations based on previous work. This initial result suggests that when direct-spun, under crystallizing conditions, PET fibres develop a mainly radial density or quench profile, whereas fibres spun under conditions that give little crystallinity have a mainly radial orientation gradient. Experiments to test this suggestion further have not been done yet.


2014 ◽  
Vol 937 ◽  
pp. 86-91 ◽  
Author(s):  
Yassir A. Eltahir ◽  
Haroon A.M. Saeed ◽  
Yu Min Xia ◽  
Yi Min Wang

Polyamide 5,6 (PA56) fibers were successfully prepared by melt-spinning technique. PA56 fibers were subjected to hot drawing process at different draw ratio and temperature. The effect of the drawing conditions on their mechanical properties such as tenacity, tensile modulus and breaking elongation were investigated by means of tensile test measurements. The results revealed that the tenacity and tensile modulus were found to be increased, while the elongation at break decreased with the draw ratio. The improvements of the mechanical properties could be attributed to the enhanced of the molecular orientation along the fiber axis and an increase in crystallinity. On the other hand, the PA56 fibers mechanical properties do not show significant difference with the drawing temperatures.


2011 ◽  
Vol 47 (3) ◽  
pp. 271-281 ◽  
Author(s):  
M. Avella ◽  
M. Cocca ◽  
ME Errico ◽  
G. Gentile

Biodegradable poly(vinyl alcohol) (PVOH) based foams were prepared through an ecofriendly methodology. Different amount of recycled multilayer cartons (MC), composed of cellulose and low-density polyethylene (80/20 wt/wt), were added as a direct cellulose source to PVOH. Foams were realized through a modified overrun process without using chemical agents or promoting chemical reactions. In particular, the air entrapped during the high-speed mixing of the PVOH/MC water dispersion was able to create a porous morphology. The effects of the addition of MC on microstructure, swelling behavior, and mechanical and thermal properties of foams were investigated. Materials were characterized by a dual-pore structure. Improvements of the swelling behavior, mechanical properties, and thermal stability were recorded as a function of MC content. These findings can be considered as a result of a good interaction between filler and polymer.


2014 ◽  
Vol 66 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Serkan Büyükdoğan ◽  
Süleyman Gündüz ◽  
Mustafa Türkmen

Purpose – The paper aims to provide new observations about static strain ageing in aluminium (Al) alloys which are widely used in structural applications. Design/methodology/approach – The present work aims to provide theoretical and practical information to industries or researchers who may be interested in the effect of static strain ageing on mechanical properties of Al alloys. The data are sorted into the following sections: introduction, materials and experimental procedure, results and discussion and conclusions. Findings – Tensile strength, proof strength (0.2 per cent) and percentage elongation measurement were used to investigate the effect of strain ageing on the mechanical properties. Wear tests were performed by sliding the pin specimens, which were prepared from as-received, solution heat-treated, deformed and undeformed specimens after ageing, on high-speed tool steel (64 HRC). It is concluded that the variations in ageing time improved the strength and wear resistance of the 6063 Al alloy; however, a plastically deformed solution-treated alloy has higher strength and wear resistance than undeformed specimens for different ageing times at 180°C. Practical implications – A very useful source of information for industries using or planning to produce Al alloys. Originality/value – This paper fulfils an identified resource need and offers practical help to the industries.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Bo Seok Song ◽  
Jun Young Lee ◽  
Sun Hwa Jang ◽  
Wan-Gyu Hahm

High-speed melt spinning of thermotropic liquid crystalline polymer (TLCP) resin composed of 4-hydroxybenzoic acid (HBA) and 2-hydroxy-6-napthoic acid (HNA) monomers in a molar ratio of 73/27 was conducted to investigate the characteristic structure development of the fibers under industrial spinning conditions, and the obtained as-spun TLCP fibers were analyzed in detail. The tensile strength and modulus of the fibers increased with shear rate in nozzle hole, draft in spin-line and spinning temperature and exhibited the high values of approximately 1.1 and 63 GPa, respectively, comparable to those of industrial as-spun TLCP fibers, at a shear rate of 70,000 s−1 and a draft of 25. X-ray diffraction demonstrated that the mechanical properties of the fibers increased with the crystalline orientation factor (fc) and the fractions of highly oriented crystalline and non-crystalline anisotropic phases. The results of structure analysis indicated that a characteristic skin–core structure developed at high drafts (i.e., spinning velocity) and low spinning temperatures, which contributed to weakening the mechanical properties of the TLCP fibers. It is supposed that this heterogeneous structure in the cross-section of the fibers was induced by differences in the cooling rates of the skin and core of the fiber in the spin-line.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Qingzhong Mao ◽  
Yusheng Zhang ◽  
Yazhou Guo ◽  
Yonghao Zhao

AbstractThe rapid development of high-speed rail requires copper contact wire that simultaneously possesses excellent electrical conductivity, thermal stability and mechanical properties. Unfortunately, these are generally mutually exclusive properties. Here, we demonstrate directional optimization of microstructure and overcome the strength-conductivity tradeoff in copper wire. We use rotary swaging to prepare copper wire with a fiber texture and long ultrafine grains aligned along the wire axis. The wire exhibits a high electrical conductivity of 97% of the international annealed copper standard (IACS), a yield strength of over 450 MPa, high impact and wear resistances, and thermal stability of up to 573 K for 1 h. Subsequent annealing enhances the conductivity to 103 % of IACS while maintaining a yield strength above 380 MPa. The long grains provide a channel for free electrons, while the low-angle grain boundaries between ultrafine grains block dislocation slip and crack propagation, and lower the ability for boundary migration.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1821
Author(s):  
Ildar I. Salakhov ◽  
Nadim M. Shaidullin ◽  
Anatoly E. Chalykh ◽  
Mikhail A. Matsko ◽  
Alexey V. Shapagin ◽  
...  

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as “relative elongation at break at −45 °C” and “Izod impact strength at −40 °C” are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at −45 °C and Izod impact strength at −20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at −45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE–LLDPE systems at subzero temperatures.


2021 ◽  
Vol 1121 (1) ◽  
pp. 012009
Author(s):  
S Lee ◽  
R Muchime ◽  
R Matsumoto ◽  
H Utsunomiya

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young’s modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.


Sign in / Sign up

Export Citation Format

Share Document