scholarly journals Influence of nanoparticles on the morphology, thermal stability and air permeability of electrospun polylactic-acid fibres

e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Jenny Alongi ◽  
Merima Pošković

AbstractPolylactic-acid (PLA) and PLA-clay fibres have been produced from solution of 1,1,1,3,3,3-hexafluoro-2-propanol by electrospinning. Nanoclays having different aspect ratio, namely a montmorillonite and a sepiolite, have been added and dispersed within the polymer matrix in order to enhance the thermal stability and air permeability of PLA. The influence of the polymer molecular weight, the solution viscosity and conductivity on the morphology of the fibres has been investigated. Electron microscopy has shown that fibre diameter and the presence of beads defects in the fibres depend on the type of clay added to the polymer matrix. The thermal stability in nitrogen and in air has been drastically enhanced for the presence of the clays as compared with neat polymer. Finally, permeability tests performed on the electrospun condensed fibres pointed out that PLA-clay fibres exhibit a lower permeability to air (up to 90%) with respect to neat PLA fibres.

Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 612 ◽  
Author(s):  
Mokgaotsa Jonas Mochane ◽  
Sifiso Innocent Magagula ◽  
Jeremia Shale Sefadi ◽  
Emmanuel Rotimi Sadiku ◽  
Teboho Clement Mokhena

The utilization of layered nanofillers in polymer matrix, as reinforcement, has attracted great interest in the 21st century. This can be attributed to the high aspect ratios of the nanofillers and the attendant substantial improvement in different properties (i.e., increased flammability resistance, improved modulus and impact strength, as well as improved barrier properties) of the resultant nanocomposite when compared to the neat polymer matrix. Amongst the well-known layered nanofillers, layered inorganic materials, in the form of LDHs, have been given the most attention. LDH nanofillers have been employed in different polymers due to their flexibility in chemical composition as well as an adjustable charge density, which permits numerous interactions with the host polymer matrices. One of the most important features of LDHs is their ability to act as flame-retardant materials because of their endothermic decomposition. This review paper gives detailed information on the: preparation methods, morphology, flammability, and barrier properties as well as thermal stability of LDH/polymer nanocomposites.


2011 ◽  
Vol 194-196 ◽  
pp. 610-613 ◽  
Author(s):  
Bing Hai Dong ◽  
Tao Jiang ◽  
Zu Xun Xu ◽  
Hong Bing Lu ◽  
Shi Min Wang

A coagulation method providing a better dispersion of nano-Antimony-Doped Tin Oxide (ATO) in a polymer matrix was used to produce nano-ATO/poly(methyl methacrylate) (PMMA) composites. Scanning electron microscopy showed an improved dispersion of nano-ATO in the PMMA matrix, which is a key factor to determine the composite performance. Moreover, the PMMA with the addition of nano-ATO showed improved electrical conductivity and thermal stability.


1984 ◽  
Vol 49 (6) ◽  
pp. 1552-1556
Author(s):  
Minoru Kumakura ◽  
Isso Kaetsu

α-Chymotrypsin was immobilized by radiation polymerization at low temperatures and the effect of the hydrophilicity of the polymer matrix on the enzyme activity and thermal stability was studied. The activity and thermal stability of immobilized chymotrypsin increased with the increasing hydrophilicity of the polymer matrix or monomer. The thermal stability was affected by the form and pore size of the polymer matrix; chymotrypsin immobilized on a soft-gel polymer matrix exhibited an enhanced thermal stability.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 376
Author(s):  
Su-Mei Huang ◽  
Jiunn-Jer Hwang ◽  
Hsin-Jiant Liu ◽  
An-Miao Zheng

In this study, the montmorillonite (MMT) clay was modified with NH4Cl, and then the structures were exfoliated or intercalated in a polylactic acid (PLA) matrix by a torque rheometer in the ratio of 0.5, 3.0, 5.0 and 8.0 wt%. X-ray diffraction (XRD) revealed that the organic modified-MMT(OMMT) was distributed successfully in the PLA matrix. After thermal pressing, the thermal stability of the mixed composites was measured by a TGA. The mixed composites were also blended with OMMT by a co-rotating twin screw extruder palletizing system, and then injected for the ASTM-D638 standard specimen by an injection machine for measuring the material strength by MTS. The experimental results showed that the mixture of organophilic clay and PLA would enhance the thermal stability. In the PLA mixed with 3 wt% OMMT nanocomposite, the TGA maximum decomposition temperature (Tmax) rose from 336.84 °C to 339.08 °C. In the PLA mixed with 5 wt% OMMT nanocomposite, the loss of temperature rose from 325.14 °C to 326.48 °C. In addition, the elongation rate increased from 4.46% to 10.19% with the maximum loading of 58 MPa. After the vibrating hydrolysis process, the PLA/OMMT nanocomposite was degraded through the measurement of differential scanning calorimetry (DSC) and its Tg, Tc, and Tm1 declined.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Aleksandra Kozłowska ◽  
Adam Grajcar ◽  
Aleksandra Janik ◽  
Krzysztof Radwański ◽  
Ulrich Krupp ◽  
...  

AbstractAdvanced medium-Mn sheet steels show an opportunity for the development of cost-effective and light-weight automotive parts with improved safety and optimized environmental performance. These steels utilize the strain-induced martensitic transformation of metastable retained austenite to improve the strength–ductility balance. The improvement of mechanical performance is related to the tailored thermal and mechanical stabilities of retained austenite. The mechanical stability of retained austenite was estimated in static tensile tests over a wide temperature range from 20 °C to 200 °C. The thermal stability of retained austenite during heating at elevated temperatures was assessed by means of dilatometry. The phase composition and microstructure evolution were investigated by means of scanning electron microscopy, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy techniques. It was shown that the retained austenite stability shows a pronounced temperature dependence and is also stimulated by the manganese addition in a 3–5% range.


2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


NANO ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. 1850119
Author(s):  
Xiaoyan Li ◽  
Yunlong Yu ◽  
Xiangfeng Guan ◽  
Peihui Luo ◽  
Linqin Jiang ◽  
...  

Eu[Formula: see text]/Tb[Formula: see text] co-doped nanocomposite containing CeO2 nanocrystals was successfully prepared by an in situ sol–gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of CeO2 nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of CeO2 content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.


Sign in / Sign up

Export Citation Format

Share Document