Effect of the penetration of isocyanates (pMDI) on the nanomechanics of wood cell wall evaluated by AFM-IR and nanoindentation (NI)

Holzforschung ◽  
2018 ◽  
Vol 72 (4) ◽  
pp. 301-309 ◽  
Author(s):  
Xinzhou Wang ◽  
Linguo Zhao ◽  
Yuhe Deng ◽  
Yanjun Li ◽  
Siqun Wang

AbstractThe effects of the penetration of polymeric diphenyl methane diisocyanate (pMDI) on the chemical structure as well as the static and dynamic mechanical properties of wood cell walls (CWs) were investigated by atomic force microscopy with infrared radiation (AFM-IR) and nanoindentation (NI). Results indicated that the possible penetration of some pMDI molecules into the CW affected the mechanical properties of wood CW significantly. The physical and chemical interactions between pMDI and CW may strengthen the connections between the cell-wall materials and thus improved the static elastic modulus and short-term creep resistance of the CW. The elastic modulus (Er) of CWs was increased from 16.5 to 17.7 GPa; the creep ratio of the CWs decreased by 15% after the penetration of pMDI. Dynamic NI properties indicated that the effective penetration of pMDI had a positive effect on the reduced storage modulus (Er′), whereas it negatively affected the loss modulus (Er″) and the damping coefficient (tanδ) of wood CW in a large frequency scale.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Amir Hassan ◽  
Miguel V. Vitorino ◽  
Tiago Robalo ◽  
Mário S. Rodrigues ◽  
Isabel Sá-Correia

Abstract The influence that Burkholderia cenocepacia adaptive evolution during long-term infection in cystic fibrosis (CF) patients has on cell wall morphology and mechanical properties is poorly understood despite their crucial role in cell physiology, persistent infection and pathogenesis. Cell wall morphology and physical properties of three B. cenocepacia isolates collected from a CF patient over a period of 3.5 years were compared using atomic force microscopy (AFM). These serial clonal variants include the first isolate retrieved from the patient and two late isolates obtained after three years of infection and before the patient’s death with cepacia syndrome. A consistent and progressive decrease of cell height and a cell shape evolution during infection, from the typical rods to morphology closer to cocci, were observed. The images of cells grown in biofilms showed an identical cell size reduction pattern. Additionally, the apparent elasticity modulus significantly decreases from the early isolate to the last clonal variant retrieved from the patient but the intermediary highly antibiotic resistant clonal isolate showed the highest elasticity values. Concerning the adhesion of bacteria surface to the AFM tip, the first isolate was found to adhere better than the late isolates whose lipopolysaccharide (LPS) structure loss the O-antigen (OAg) during CF infection. The OAg is known to influence Gram-negative bacteria adhesion and be an important factor in B. cenocepacia adaptation to chronic infection. Results reinforce the concept of the occurrence of phenotypic heterogeneity and adaptive evolution, also at the level of cell size, form, envelope topography and physical properties during long-term infection.


2000 ◽  
Vol 15 (4) ◽  
pp. 838-841
Author(s):  
Allen T. Chien ◽  
Tom Felter ◽  
James D. LeMay ◽  
Mehdi Balooch

The local mechanical properties of silica-reinforced silicone composites were investigated using a modified atomic force microscopy technique. Elastic modulus measurements (1.5 ± 0.1 MPa) are consistent with bulk measurements (1.9 MPa), and changes in the modulus at the surface of the composite samples (E = 1.5 to 3.5 MPa) were observed as a result of α-irradiation (dose = 1.7 × 1010 to 2.0 × 1012 α/cm2). The sensitivity of the technique was demonstrated by a detectable change in modulus at even the small dose of 1.7 × 1010 α/cm2. The penetration depth of the α-particles into the material, estimated to be 22 ± 2 μm from the sample edge, was determined by cross-section depth profiling; and modeling of the ion penetration depth using transport of ions in matter codes (24.4 ± 0.4 μm) closely matched experimental observations.


2019 ◽  
Vol 54 (15) ◽  
pp. 2065-2071 ◽  
Author(s):  
M Subbir Parvej ◽  
Xinnan Wang ◽  
Joseph Fehrenbach ◽  
Chad A Ulven

Kenaf ( Hibiscus cannabinus L.) fiber is being extensively used as a reinforcement material in composites due to its excellent mechanical properties. To use this fiber more efficiently, it is necessary to understand its mechanical properties at micro/nano meter scale. Despite the evidence of some past studies to determine the elastic modulus of kenaf fiber, most of them were performed on fiber bundles. Bundle-based method to find the elastic moduli has some obvious issues of foreign materials being present, incorrect gauge length, and sample diameter due to void spaces. These issues pose as obvious hurdles to determine the elastic modulus accurately. In this study, individual kenaf micro fiber was used to find elastic modulus in the radial direction. The radial elastic modulus of the fiber was characterized by atomic force microscopy-based nanoindentation. To determine the radial elastic modulus from the force versus sample deformation data, the extended Johnson–Kendall–Roberts model was used which considered adhesion force from the fiber surface. The radial elastic modulus of the kenaf fiber was found to be 2.3 GPa.


2012 ◽  
Vol 1424 ◽  
Author(s):  
C. A. Wright ◽  
C.J. Sullivan ◽  
B. Crawford ◽  
L.D. Britt ◽  
M.A. Mamun ◽  
...  

ABSTRACTEscherichia coli, like other gram-negative bacteria, is protected from the surrounding harsh environment by a cell wall consisting of the peptidoglycan and outer membrane. Whereas the cytoplasmic membrane is the selective barrier, the cell wall provides mechanical strength for the cell. As bacteria navigate various environments, osmotic pressure can change dramatically due to changes in local solute concentration. The peptidoglycan together with the cellular proteins mitigates the osmotic stress that would otherwise cause lysis. The mechanical properties of E. coli cells and its individual layers have been largely indeterminable until the recent development of probe-based measurement tools. Since their invention, scientists have reported significant data measuring elasticity, modulus, and stiffness using atomic force microscopy (AFM). Fundamentally, in order to determine these mechanical properties through probe-based techniques, the contact area and load should be well defined. The load can be precisely calculated through the AFM cantilever spring constant. However, the silicon tip contact area can only be estimated, potentially leading to compounding uncertainties. Therefore, we developed a methodology to determine nanomechanical properties of E. coli using a nanoindenter.


Holzforschung ◽  
2015 ◽  
Vol 69 (8) ◽  
pp. 975-984 ◽  
Author(s):  
Dan Ren ◽  
Hankun Wang ◽  
Zixuan Yu ◽  
Hao Wang ◽  
Yan Yu

Abstract The mechanical properties of cell wall layers of bamboo fibers (BFs) and the interphase between BFs and maleated polypropylene polymer (MAPP) were investigated by means of peakforce quantitative nanomechanics based on atomic force microscopy. This technique is well suited for simultaneous imaging of several important material indicators, such as elastic modulus, deformation at peak force, and adhesion force between probe tip and sample. Furthermore, quantitative local mechanical information could be extracted from the obtained images by means of profile analysis. In case of BFs, the elastic modulus of the secondary cell wall and the compound middle lamella was found to be 21.3±2.9 GPa and 14.4±3.6 GPa, respectively, which agrees well with data measured by the nanoindentation technique. Additionally, this technique was also applied for bamboo plastic composites, and data from the transitional zone (interphase) between BFs and the MAPP matrix, with a thickness of 102±18 nm, could be obtained.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J. K. Wenderott ◽  
Carmen G. Flesher ◽  
Nicki A. Baker ◽  
Christopher K. Neeley ◽  
Oliver A. Varban ◽  
...  

AbstractObesity-related type 2 diabetes (DM) is a major public health concern. Adipose tissue metabolic dysfunction, including fibrosis, plays a central role in DM pathogenesis. Obesity is associated with changes in adipose tissue extracellular matrix (ECM), but the impact of these changes on adipose tissue mechanics and their role in metabolic disease is poorly defined. This study utilized atomic force microscopy (AFM) to quantify difference in elasticity between human DM and non-diabetic (NDM) visceral adipose tissue. The mean elastic modulus of DM adipose tissue was twice that of NDM adipose tissue (11.50 kPa vs. 4.48 kPa) to a 95% confidence level, with significant variability in elasticity of DM compared to NDM adipose tissue. Histologic and chemical measures of fibrosis revealed increased hydroxyproline content in DM adipose tissue, but no difference in Sirius Red staining between DM and NDM tissues. These findings support the hypothesis that fibrosis, evidenced by increased elastic modulus, is enhanced in DM adipose tissue, and suggest that measures of tissue mechanics may better resolve disease-specific differences in adipose tissue fibrosis compared with histologic measures. These data demonstrate the power of AFM nanoindentation to probe tissue mechanics, and delineate the impact of metabolic disease on the mechanical properties of adipose tissue.


2002 ◽  
Vol 283 (4) ◽  
pp. C1219-C1227 ◽  
Author(s):  
Amy M. Collinsworth ◽  
Sarah Zhang ◽  
William E. Kraus ◽  
George A. Truskey

The effect of differentiation on the transverse mechanical properties of mammalian myocytes was determined by using atomic force microscopy. The apparent elastic modulus increased from 11.5 ± 1.3 kPa for undifferentiated myoblasts to 45.3 ± 4.0 kPa after 8 days of differentiation ( P< 0.05). The relative contribution of viscosity, as determined from the normalized hysteresis area, ranged from 0.13 ± 0.02 to 0.21 ± 0.03 and did not change throughout differentiation. Myosin expression correlated with the apparent elastic modulus, but neither myosin nor β-tubulin were associated with hysteresis. Microtubules did not affect mechanical properties because treatment with colchicine did not alter the apparent elastic modulus or hysteresis. Treatment with cytochalasin D or 2,3-butanedione 2-monoxime led to a significant reduction in the apparent elastic modulus but no change in hysteresis. In summary, skeletal muscle cells exhibited viscoelastic behavior that changed during differentiation, yielding an increase in the transverse elastic modulus. Major contributors to changes in the transverse elastic modulus during differentiation were actin and myosin.


MRS Advances ◽  
2016 ◽  
Vol 1 (40) ◽  
pp. 2763-2768 ◽  
Author(s):  
Sergei Magonov ◽  
Marko Surtchev ◽  
John Alexander ◽  
Ivan Malovichko ◽  
Sergey Belikov

ABSTRACTRecent advances in studies of local mechanical properties of polymers with different atomic force microscopy techniques (contact, Hybrid and amplitude modulation modes) are described in interplay between experiment and theory. Analysis of force curves and time dependencies of probe response to sample compliance, which were recorded on a number of polymer materials at various temperatures, leads to quantitative mapping of specific mechanical properties (elastic modulus, work of adhesion, etc). High spatial resolution of elastic modulus mapping (10-20 nm) is illustrated in measurements of lamellar structures of several polymers. Challenges of examination of viscoelastic properties are pointed out and a possible solution is presented.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shuting Zhang ◽  
Yihui Weng ◽  
Chunhua Ma

AbstractElastomeric nanostructures are normally expected to fulfill an explicit mechanical role and therefore their mechanical properties are pivotal to affect material performance. Their versatile applications demand a thorough understanding of the mechanical properties. In particular, the time dependent mechanical response of low-density polyolefin (LDPE) has not been fully elucidated. Here, utilizing state-of-the-art PeakForce quantitative nanomechanical mapping jointly with force volume and fast force volume, the elastic moduli of LDPE samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 up to 2 k Hz. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young’s modulus was discovered with increasing acquisition frequency. It was measured 11.7 ± 5.2 MPa at 0.1 Hz and increased to 89.6 ± 17.3 MPa at 2 kHz. Moreover, creep compliance experiment showed that instantaneous elastic modulus E1, delayed elastic modulus E2, viscosity η, retardation time τ were 22.3 ± 3.5 MPa, 43.3 ± 4.8 MPa, 38.7 ± 5.6 MPa s and 0.89 ± 0.22 s, respectively. The multiparametric, multifunctional local probing of mechanical measurement along with exceptional high spatial resolution imaging open new opportunities for quantitative nanomechanical mapping of soft polymers, and can potentially be extended to biological systems.


2018 ◽  
Vol 2 (2) ◽  
pp. 24-29
Author(s):  
Ahmed Kazaili ◽  
Riaz Akhtar

Understanding of the ultrastructure and nanomechanical behavior of the cornea is important for a number of ocular disorders. In this study, atomic force microscopy (AFM) was used to determine nanoscale changes in the porcine cornea following enzymatic degradation. Diff erent concentrations of amylase were used to degrade the cornea. A reduction in elastic modulus at the nanoscale, along with disrupted collagen morphology, was observed following enzymatic treatment. This study highlights the interplay between mechanical properties and collagen organization in the healthy cornea.


Sign in / Sign up

Export Citation Format

Share Document