scholarly journals Iron overload and altered iron metabolism in ovarian cancer

2017 ◽  
Vol 398 (9) ◽  
pp. 995-1007 ◽  
Author(s):  
Stephanie Rockfield ◽  
Joseph Raffel ◽  
Radhe Mehta ◽  
Nabila Rehman ◽  
Meera Nanjundan

AbstractIron is an essential element required for many processes within the cell. Dysregulation in iron homeostasis due to iron overload is detrimental. This nutrient is postulated to contribute to the initiation of cancer; however, the mechanisms by which this occurs remain unclear. Defining how iron promotes the development of ovarian cancers from precursor lesions is essential for developing novel therapeutic strategies. In this review, we discuss (1) how iron overload conditions may initiate ovarian cancer development, (2) dysregulated iron metabolism in cancers, (3) the interplay between bacteria, iron, and cancer, and (4) chemotherapeutic strategies targeting iron metabolism in cancer patients.

2021 ◽  
Vol 22 (4) ◽  
pp. 2204
Author(s):  
Simon Grootendorst ◽  
Jonathan de Wilde ◽  
Birgit van Dooijeweert ◽  
Annelies van Vuren ◽  
Wouter van Solinge ◽  
...  

Rare hereditary anemias (RHA) represent a group of disorders characterized by either impaired production of erythrocytes or decreased survival (i.e., hemolysis). In RHA, the regulation of iron metabolism and erythropoiesis is often disturbed, leading to iron overload or worsening of chronic anemia due to unavailability of iron for erythropoiesis. Whereas iron overload generally is a well-recognized complication in patients requiring regular blood transfusions, it is also a significant problem in a large proportion of patients with RHA that are not transfusion dependent. This indicates that RHA share disease-specific defects in erythroid development that are linked to intrinsic defects in iron metabolism. In this review, we discuss the key regulators involved in the interplay between iron and erythropoiesis and their importance in the spectrum of RHA.


2020 ◽  
Vol 10 ◽  
Author(s):  
Nastassja Terraneo ◽  
Francis Jacob ◽  
Anna Dubrovska ◽  
Jürgen Grünberg

2011 ◽  
Vol 47 (3) ◽  
pp. 151-160 ◽  
Author(s):  
Jennifer L. McCown ◽  
Andrew J. Specht

Iron is an essential element for nearly all living organisms and disruption of iron homeostasis can lead to a number of clinical manifestations. Iron is used in the formation of both hemoglobin and myoglobin, as well as numerous enzyme systems of the body. Disorders of iron in the body include iron deficiency anemia, anemia of inflammatory disease, and iron overload. This article reviews normal iron metabolism, disease syndromes of iron imbalance, diagnostic testing, and treatment of either iron deficiency or excess. Recent advances in diagnosing iron deficiency using reticulocyte indices are reviewed.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2601
Author(s):  
Tanja Grubić Kezele ◽  
Božena Ćurko-Cofek

Iron is an essential element that participates in numerous cellular processes. Any disruption of iron homeostasis leads to either iron deficiency or iron overload, which can be detrimental for humans’ health, especially in elderly. Each of these changes contributes to the faster development of many neurological disorders or stimulates progression of already present diseases. Age-related cellular and molecular alterations in iron metabolism can also lead to iron dyshomeostasis and deposition. Iron deposits can contribute to the development of inflammation, abnormal protein aggregation, and degeneration in the central nervous system (CNS), leading to the progressive decline in cognitive processes, contributing to pathophysiology of stroke and dysfunctions of body metabolism. Besides, since iron plays an important role in both neuroprotection and neurodegeneration, dietary iron homeostasis should be considered with caution. Recently, there has been increased interest in sex-related differences in iron metabolism and iron homeostasis. These differences have not yet been fully elucidated. In this review we will discuss the latest discoveries in iron metabolism, age-related changes, along with the sex differences in iron content in serum and brain, within the healthy aging population and in neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and stroke.


2017 ◽  
Vol 138 (4) ◽  
pp. 183-193 ◽  
Author(s):  
Sintayehu Ambachew ◽  
Belete Biadgo

The prevalence of type 2 diabetes is increasing in epidemic proportions worldwide. Evidence suggests body iron overload is frequently linked and observed in patients with type 2 diabetes. Body iron metabolism is based on iron conservation and recycling by which only a part of the daily need is replaced by duodenal absorption. The principal liver-produced peptide called hepcidin plays a fundamental role in iron metabolism. It directly binds to ferroportin, the sole iron exporter, resulting in the internalization and degradation of ferroportin. However, inappropriate production of hepcidin has been shown to play a role in the pathogenesis of type 2 diabetes mellitus and its complications, based on the regulation and expression in iron-abundant cells. Underexpression of hepcidin results in body iron overload, which triggers the production of reactive oxygen species simultaneously thought to play a major role in diabetes pathogenesis mediated both by β-cell failure and insulin resistance. Increased hepcidin expression results in increased intracellular sequestration of iron, and is associated with the complications of type 2 diabetes. Besides, hepcidin concentrations have been linked to inflammatory cytokines, matriptase 2, and chronic hepatitis C infection, which have in turn been reported to be associated with diabetes by several approaches. Either hepcidin-targeted therapy alone or as adjunctive therapy with phlebotomy, iron chelators, or dietary iron restriction may be able to alter iron parameters in diabetic patients. Therefore, measuring hepcidin may improve differential diagnosis and the monitoring of disorders of iron metabolism.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-27-SCI-27
Author(s):  
Tracey Rouault

Abstract Abstract SCI-27 Iron metabolism is regulated in mammals to assure that adequate iron is delivered to the hematopoietic system to support erythropoiesis. In systemic iron metabolism, regulation of both iron uptake from the diet and release from erythrophagocytosing macrophages is coordinated by action of the peptide hormone, hepcidin, which inhibits activity of the iron exporter, ferroportin. In general, high expression of hepcidin diminishes duodenal iron uptake and reduces macrophage iron release, a combination observed in the anemia of chronic disease. Low expression of hepcidin, which is synthesized by hepatocytes and influenced by transferrin receptor 2, HFE, hemojuvelin and bone morphogenetic receptors, facilitates iron uptake. Mutations affecting genes in the hepcidin pathway cause hemochromatosis, characterized by systemic iron overload that affects mainly hepatocytes and cardiac myocytes, but spares the CNS. In contrast, there are several degenerative diseases of the CNS in which neuronal iron overload is prominent and may play a causal role. The underlying pathophysiologies of neuronal brain iron accumulation syndromes remain unclear, even though several causal genes have been identified, including pantothenate kinase 2 and aceruloplasminemia. In some cases, increased iron may be inaccessible, and cells may suffer from functional iron insufficiency, as we propose for animals that lack iron regulatory protein 2. It is also possible that errors in subcellular iron metabolism can lead to mitochondrial iron overload and concomitant cytosolic iron deficiency, a combination observed in Friedreich ataxia, ISCU myopathy, and the sideroblastic anemia caused by glutaredoxin 5 deficiency. In each of these diseases, mitochondrial iron-sulfur cluster assembly is impaired, and it appears that normal regulation of mitochondrial iron homeostasis depends on intact iron-sulfur cluster assembly. Finally, in heme oxygenase 1 deficient animals, macrophages in the spleen and liver die upon erythrophagocytosis, and failure to normally metabolize heme leads to shift of heme iron to proximal tubules and macrophages of the kidney. Thus, treatment of “iron overload” must depend on the underlying causes, and removal of iron is appropriate in hemochromatosis, but more specific forms of therapy are needed for other forms of iron overload. 1. Ye, H. & Rouault, T. A. (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49, 4945–4956. 2. Zhang, A. S. & Enns, C. A. (2009). Molecular mechanisms of normal iron homeostasis. Hematology Am Soc Hematol Educ Program 207–214. 3. Ye, H., Jeong, S. Y., Ghosh, M. C., Kovtunovych, G., Silvestri, L., Ortillo, D., Uchida, N., Tisdale, J., Camaschella, C. & Rouault, T. A. (2010). Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J Clin Invest 120, 1749–1761. 4. Ghosh, M. C., Tong, W. H., Zhang, D., Ollivierre-Wilson, H., Singh, A., Krishna, M. C., Mitchell, J. B. & Rouault, T. A. (2008). Tempol-mediated activation of latent iron regulatory protein activity prevents symptoms of neurodegenerative disease in IRP2 knockout mice. Proc Natl Acad Sci U S A 105, 12028–12033. 5. Crooks, D. R., Ghosh, M. C., Haller, R. G., Tong, W. H. & Rouault, T. A. (2010). Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood 115, 860–869. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Fernando Sotillo ◽  
Judith Giroud-Gerbetant ◽  
Jorge Couso ◽  
Rafael Artuch ◽  
Antonio Zorzano ◽  
...  

Slc7a7 encodes for y+LAT1, a transporter of cationic amino acid across the basolateral membrane of epithelial cells. Mutations in SLC7A7 gene give rise to Lysinuric Protein Intolerance (LPI), a rare autosomal recessive disease with wide variability of complications. Intriguingly, y+LAT1 is also involved in arginine transport in non polarized cells such as macrophages. Here we report that complete inducible Slc7a7 ablation in mouse compromises systemic arginine availability that alters proper erythropoiesis and that dysfunctional RBC generation leads to increased erythrophagocytosis, iron overload and an altered iron metabolism by macrophages. Herein, uncovering a novel mechanism that links amino acid metabolism to erythropoiesis and iron metabolism. Mechanistically, the iron exporter ferroportin-1 expression was compromised by increased plasma hepcidin causing macrophage iron accumulation. Strikingly, lysozyme M-cell-specific knockout mice failed to reproduce the total knockout alterations, while bone marrow transplantation experiments resulted in the resolution of macrophage iron overload but could not overcome erythropoietic defect. This study establishes a new crucial link between systemic arginine availability in erythropoiesis and iron homeostasis.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22003-e22003
Author(s):  
Venu Konala ◽  
Natalia Platonova ◽  
Michela Colombo ◽  
Leonardo Mirandola ◽  
Elisa Lazzari ◽  
...  

e22003 Background: Ovarian cancer (OC) is the most aggressive gynecologic cancer. Understanding OC molecular pathogenesis is critical to provide novel therapeutic strategies. We aim to elucidate Notch oncogenic role in OC by focusing on its extensive crosstalk with other important pathways as CXCR4/SDF1alpha chemokine system whose involvement in OC development and metastasis is well recognized. Methods: We used flow-cytometry, cell cycle analysis, real-time PCR, and Transwell chemotaxis assay to investigate the outcome of Notch signaling withdrawal on tumor cell response to CXCR4 and SDF1alpha. Results: The analyzed OC cell lines expressed high levels of CXCR4 and its ligand SDF1alpha. Treatment with DAPT, an inhibitor of Notch activity, reduced OC cell proliferation and blocked cell cycle in G0/G1 phase without affecting apoptosis. In addition, Notch withdrawal diminished CXCR4 and SDF1alpha expression levels and hampered SDF1-driven migration and proliferation. Conclusions: Notch deregulation might affect important features of OC such as cell growth and migration through the modulation of CXCR4/SDF1a pathway. This indicates that these intertwined pathways are promising therapeutic targets in OC.


2016 ◽  
Vol 310 (3) ◽  
pp. G171-G180 ◽  
Author(s):  
Gautam Rishi ◽  
Eriza S. Secondes ◽  
Daniel F. Wallace ◽  
V. Nathan Subramaniam

Iron is an essential element, since it is a component of many macromolecules involved in diverse physiological and cellular functions, including oxygen transport, cellular growth, and metabolism. Systemic iron homeostasis is predominantly regulated by the liver through the iron regulatory hormone hepcidin. Hepcidin expression is itself regulated by a number of proteins, including transferrin receptor 2 (TFR2). TFR2 has been shown to be expressed in the liver, bone marrow, macrophages, and peripheral blood mononuclear cells. Studies from our laboratory have shown that mice with a hepatocyte-specific deletion of Tfr2 recapitulate the hemochromatosis phenotype of the global Tfr2 knockout mice, suggesting that the hepatic expression of TFR2 is important in systemic iron homeostasis. It is unclear how TFR2 in macrophages contributes to the regulation of iron metabolism. We examined the role of TFR2 in macrophages by analysis of transgenic mice lacking Tfr2 in macrophages by crossing Tfr2 f/f mice with LysM-Cre mice. Mice were fed an iron-rich diet or injected with lipopolysaccharide to examine the role of macrophage Tfr2 in iron- or inflammation-mediated regulation of hepcidin. Body iron homeostasis was unaffected in the knockout mice, suggesting that macrophage TFR2 is not required for the regulation of systemic iron metabolism. However, peritoneal macrophages of knockout mice had significantly lower levels of ferroportin mRNA and protein, suggesting that TFR2 may be involved in regulating ferroportin levels in macrophages. These studies further elucidate the role of TFR2 in the regulation of iron homeostasis and its role in regulation of ferroportin and thus macrophage iron homeostasis.


2019 ◽  
Vol 20 (13) ◽  
pp. 3283 ◽  
Author(s):  
Shu-Wing Ng ◽  
Sam G. Norwitz ◽  
Errol R. Norwitz

Iron is an essential element for the survival of most organisms, including humans. Demand for iron increases significantly during pregnancy to support growth and development of the fetus. Paradoxically, epidemiologic studies have shown that excessive iron intake and/or high iron status can be detrimental to pregnancy and is associated with reproductive disorders ranging from endometriosis to preeclampsia. Reproductive complications resulting from iron deficiency have been reviewed elsewhere. Here, we focus on reproductive disorders associated with iron overload and the contribution of ferroptosis—programmed cell death mediated by iron-dependent lipid peroxidation within cell membranes—using preeclampsia as a model system. We propose that the clinical expressions of many reproductive disorders and pregnancy complications may be due to an underlying ferroptopathy (elemental iron-associated disease), characterized by a dysregulation in iron homeostasis leading to excessive ferroptosis.


Sign in / Sign up

Export Citation Format

Share Document