Adsorption of Hexavalent Chromium by Eucalyptus camaldulensis bark/maghemite Nano Composite

Author(s):  
Fatma Elcin Erkurt ◽  
Behzat Balci ◽  
Emine Su Turan

Abstract In the present study, Eucalyptus camaldulensis bark/maghemite composite (ECMC) was used for potential application as a low-cost adsorbent for the removal of Cr(VI) from aqueous solution. The structural characterization, morphology and elemental analysis of ECMC were performed by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray (EDX) and X-ray Diffraction (XRD). The effects of various independent parameters, contact time, initial Cr(VI) concentration, temperature, pH, and adsorption were investigated. It was found that the adsorption capacity of ECMC increases with increasing Cr(VI) concentration and temperature. The optimum pH was found to be 2 for the removal of Cr(VI) by ECMC. The adsorption capacity was found to be 70.1 mg/g with 0.1 g ECMC at pH 2 and 30 °C. Additionally, 10 and 50 mg/L Cr(VI) were removed from 100 mL aqueous solution by 0.1 g ECMC with 99 % and 93.46 % removal efficiencies, respectively. Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Jovanovic, Smith, Koble Korringen, Vieth-Sladek and Sips Isotherm Models were applied to the experimental data to understand the adsorption mechanism better. The Freundlich Isotherm Model described the adsorption process better (R2 = 0.991) among the other isotherms studied.

Molekul ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 28
Author(s):  
Mohammad Jihad Madiabu ◽  
Joko Untung ◽  
Imas Solihat ◽  
Andi Muhammad Ichzan

The research aims to investigate feasibility eggshells as potential adsorbent to remove copper(II) ions from aqueous solution. Eggshells powder was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Effect of copper(II) initial concentration, adsorbent dosage, and contact time have conducted. The optimum adsorption condition obtained when 0.7 g eggshells applied to 50 mg/L copper(II) solution for 50 minutes. The maximum percentage of copper(II) removal was exceeded more than 85%. Langmuir and Freundlich isotherm model were applied to describe the equilibrium adsorption. Copper(II) kinetics sorption process was fitted to pseudo-second order model with a rate constant equal to 0.516 g/mg.min. The results clearly exhibit that eggshells powder can be effectively used to remove copper(II) ions from aqueous solutions.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 502 ◽  
Author(s):  
Wenjuan Guo ◽  
Tingcheng Xia ◽  
Meishan Pei ◽  
Yankai Du ◽  
Luyan Wang

The main object of this work is to remove Amido black 10B using a new type of bentonite-based adsorbent with cationic groups by the modification of polyallyl amines between the interlayers of bentonite. Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were used to characterize the functionalized bentonite. A series of batch adsorption experiments were performed. The maximum adsorption amount was 144.08 mg g−1 when the pH was 2 and the contact time was 120 min. In addition, the equilibrium isotherm data were analyzed using Langmuir and Freundlich isotherm models, while only the Langmuir model could provide a high correlation. Therefore, this study provided a new functionalized bentonite as a low-cost adsorbent for dye removal from water.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dhiraj Dutta ◽  
Jyoti Prasad Borah ◽  
Amrit Puzari

Results of investigation on adsorption of Mn2+ from aqueous solution by manganese oxide-coated hollow polymethylmethacrylate microspheres (MHPM) are reported here. This is the first report on Mn-coated hollow polymer as a substitute for widely used materials like green sand or MN-coated sand. Hollow polymethylmethacrylate (HPM) was prepared by using a literature procedure. Manganese oxide (MnO) was coated on the surface of HPM (MHPM) by using the electroless plating technique. The HPM and MHPM were characterized by using optical microscopy (OM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Optical and scanning micrographs were used to monitor the surface properties of the coated layer which revealed the presence of MnO on the surface of HPM. TGA showed the presence of 4-5% of MnO in MHPM. Adsorption isotherm studies were carried out as a function of pH, initial ion concentration, and contact time, to determine the adsorption efficiency for removal of Mn2+ from contaminated water by the synthesized MHPM. The isotherm results showed that the maximum adsorption capacity of MnO-coated HPM to remove manganese contaminants from water is 8.373 mg/g. The obtained R 2 values of Langmuir isotherm and Freundlich isotherm models were 1 and 0.87, respectively. Therefore, R 2 magnitude confirmed that the Langmuir model is best suited for Mn2+ adsorption by a monolayer of MHPM adsorbent. The material developed shows higher adsorption capacity even at a higher concentration of solute ions, which is not usually observed with similar materials of this kind. Overall findings indicate that MHPM is a very potential lightweight adsorbent for removal of Mn2+ from the aqueous solution because of its low density and high surface area.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2009 ◽  
Vol 6 (3) ◽  
pp. 737-742 ◽  
Author(s):  
T. Santhi ◽  
S. Manonmani ◽  
S. Ravi

A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A granule prepared from a mixture of leafs, fruits and twigs ofMuntingia calaburahad been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), methylene red (MR) and malachite green (MG). The effects of various experimental parameters (e.g.,contact time, dye concentration, adsorbent dose and pH) were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 6, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir and Freundlich isotherm models for all three dyes sorption. The biosorption processes followed the pseudo-first order rate kinetics. The results in this study indicated thatMuntingia calaburawas an attractive candidate for removing cationic dyes from the dye wastewater.


2016 ◽  
Vol 78 (1-2) ◽  
Author(s):  
Nik Ahmad Nizam Nik Malek ◽  
Nurain Mat Sihat ◽  
Mahmud A. S. Khalifa ◽  
Auni Afiqah Kamaru ◽  
Nor Suriani Sani

In the present study, the adsorption of acid orange 7 (AO7) dye from aqueous solution by sugarcane bagasse (SB) and cetylpyridinium bromide (CPBr) modified sugarcane bagasse (SBC) was examined. SBC was prepared by reacting SB with different concentrations (0.1, 1.0 and 4.0 mM) of cationic surfactant, CPBr. The SB and SBC were characterized using Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments were carried out in a batch mode. The effect of initial AO7 concentrations (5-1000 mg/L), initial CPBr concentrations and pH of AO7 solution (2-9) on the adsorption capacity of SB and SBC were investigated. The experimental adsorption data were analyzed using Langmuir and Freundlich isotherm models. The adsorption of AO7 onto SB and SBC followed Freundlich and Langmuir isotherm models, respectively. The maximum uptake of AO7 was obtained by SBC4.0 (SB treated with 4.0 mMCPBr) with the adsorption capacity of 144.928 mg/g. The highest AO7 removal was found to be at pH 2 and 7 for SB and SBC, respectively. As a conclusion, sugarcane bagasse modified with CPBr can become an alternative adsorbent for the removal of anionic compounds in aqueous solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2017 ◽  
Vol 727 ◽  
pp. 859-865 ◽  
Author(s):  
Yi Wei Zheng ◽  
Wen Wen Tao ◽  
Gui Fang Zhang ◽  
Chao Lv ◽  
Yi Ping Zhao ◽  
...  

Polyacrylic acid/attapulgite (PAA/ATP) composite hydrogels used for removal of heavy metal ions from aqueous solution was synthesized via radical polymerization with acrylic acid (AA) and attapulgite (ATP) modified by hydrochloric acid as adsorbent. Chemical composition of the modified ATP was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) and the morphology of the PAA/ATP hydrogels was characterized by scanning electron microscope (SEM), respectively. The swelling ratio, pH-sensitivity and adsorption performance of Ni (II) ions of the composite hydrogels were studied. The results showed the swelling ratio of the PAA/ATP composite hydrogels was higher than that of PAA hydrogels and the composite hydrogels displayed sensitivity to pH values with a sharp increase of swelling ratio when the pH values increased from 4 to 6. Comparing with PAA hydrogels, the composite hydrogels obtained a larger adsorption capacity of Ni (II) ions, the average adsorption capacity could reach 72.8 mg/g and adsorption ratio could reach 84%.


2019 ◽  
Vol 9 (2) ◽  
pp. 102-115
Author(s):  
Hanane Essebaai ◽  
Ilham Ismi ◽  
Ahmed Lebkiri ◽  
Said Marzak ◽  
El Housseine Rifi

Highly efficient low-cost adsorbent was applied for copper (II) ions uptake from aqueous solution. Characteristics of natural adsorbent were established using scanning X-ray diffraction (XRD), X-ray fluorescence, electron microscope (SEM) and Fourier Transform Infra-Red (FTIR). Various physicochemical parameters such as contact time, initial copper(II) ions concentration, adsorbent dosage, pH of copper (II) ions solution and temperature were investigated. The result showed that the adsorption of copper (II) ions by natural clay was favorable at pH=5,5. The adsorption was found to increase with increase in initial copper (II) ions concentration, and contact time. Equilibrium adsorption data were fitted using three isotherms and kinetic data tested with four kinetic models. Freundlich isotherm best described the adsorption of copper (II) ions onto utilised clay, the maximum monolayer adsorption capacity (qmax) was 8 mg/g. Pseudo-second-order model best described the kinetics of the adsorption process. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that copper (II) ions adsorption was spontaneous (ΔG°<0) and endothermic (ΔH°>0).


2019 ◽  
Vol 9 (7) ◽  
Author(s):  
Kamalesh Sen ◽  
Jayanta Kumar Datta ◽  
Naba Kumar Mondal

Abstract In this study, orthophosphoric acid-modified activated char was prepared from Eucalyptus camaldulensis bark (EBAC), and used for removing traces of [N-(phosphonomethyl)glycine] (glyphosate) herbicide from aqueous solution. The adsorption capacity was characterized by zero-point-charge pH, surface analysis, and Fourier transform infrared spectroscopy. Batch mode experiments were conducted to observe the effects of selected variables, namely dose, contact time, pH, temperature, and initial concentration, on adsorption capacity. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were generated to describe the mechanisms involved in the multilayer adsorption process. The results show that high temperature enhanced the adsorption capacity of EBAC, with a temperature of 373 K yielding adsorption capacity (qmax) and Freundlich parameter (KF) of 66.76 mg g−1 and 9.64 (mg g−1) (L mg−1)−n, respectively. The thermodynamics study revealed entropy and enthalpy of −5281.3 J mol−1 and −20.416 J mol−1, respectively. Finally, glyphosate adsorption was optimized by the Box–Behnken model, and optimal conditions were recorded as initial concentration of 20.28 mg L−1, pH 10.18, adsorbent dose of 199.92 mg/50 mL, temperature of 303.23 K, and contact time of 78.42 min, with removal efficiency of 98%. Therefore, it can be suggested that EBAC could be used as an efficient, low-cost adsorbent for removal of glyphosate from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document