Mechanical Properties of Hulless Barley Stem with Different Moisture Contents

2019 ◽  
Vol 15 (1-2) ◽  
Author(s):  
Jia-hui Chen ◽  
Nan Zhao ◽  
Nan Fu ◽  
Dong Li ◽  
Li-jun Wang ◽  
...  

AbstractMechanical properties of hulless barley stems with different moisture contents (10.23%–43.14%) were investigated by using temperature sweep, frequency sweep, stress relaxation and creep tests of dynamic mechanical analyzer (DMA) in this study. Results showed a significant dependence of storage modulus, loss modulus and tan delta on moisture content. The data from stress relaxation and creep was fitted by using generalized Maxwell model and Burgers model. 5-element Maxwell model was better for describing relaxation behaviors of hulless barely stem compared with the 3-element Maxwell model. The peak values of loss modulus and tan delta both occurred at a low temperature when moisture content increased. The dynamic mechanical properties can provide useful information for the harvesting and processing of huless barely stem.

2015 ◽  
Vol 88 (4) ◽  
pp. 584-603 ◽  
Author(s):  
Jineesh Ayippadath Gopi ◽  
Golok Bihari Nando

ABSTRACT The effect of ethylene-co-methacrylate (EMA) as polymeric chemical compatibilizer on the mechanical, dynamic mechanical, phase morphology, adhesion, and rheological properties of the blends of thermoplastic polyurethane (TPU)–polydimethylsiloxane rubber (PDMS) was investigated at different blend ratios. Melt blending technique was used to prepare the compatibilized blends. Enhancement of the mechanical properties and the reduction of dispersed PDMS domain size in the alloy confirmed the compatibilization effect of EMA on TPU-PDMS blends. Dynamic mechanical properties such as storage modulus, loss modulus, and the damping factor were evaluated to assess the compatibilization effect of EMA on TPU-PDMS blends. Creep tests revealed that compatibilization led to better dimensional stability. Compatibilized blends with finer PDMS rubber domains showed relatively less reduction in storage modulus as compared with uncompatibilized blends during stress relaxation studies. Rheological analysis suggested that the incorporation of EMA decreased the interfacial slip between the blend constituents, and this also confirmed the compatibilization effect of EMA on TPU-PDMS rubber blends as a polymeric reactive compatibilizer.


2019 ◽  
Vol 11 (4) ◽  
pp. 279
Author(s):  
Gabrielly B. Rodrigues ◽  
Osvaldo Resende ◽  
Daniel E. C. de Oliveira ◽  
Lígia C. de M. Silva ◽  
Weder N. Ferreira Junior

This study aimed to evaluate the influence of drying at different temperatures on the mechanical properties of grains of grain sorghum subjected to compression at the natural rest position. Grains dried at temperatures of 60, 80 and 100 °C with different moisture contents (0.515; 0.408; 0.315; 0.234; 0.162 and 0.099 (d.b.)) were subjected to uniaxial compression between two parallel plates, applied at their natural rest position, at a rate of 0.001 m s-1. The force required to rupture in grains of grain sorghum increased as their moisture contents decreased, with values of 47.17 to 78.44 N, 61.81 to 69.66 N and 52.07 to 70.89 N for the temperatures of 60, 80 and 100 °C, respectively. The compression force required to deform grain sorghum decreased with the increment in moisture content, and the proportional deformation modulus increases with moisture content reduction. Within the studied range of moisture content, the values were 87 × 10-7 to 354.99 × 10-7 Pa, 132.63 × 10-7 to 465.98 × 10-7 Pa and 80.18 × 10-7 to 429.85 × 10-7 Pa for the temperatures of 60, 80 and 100 °C, respectively.


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 403 ◽  
Author(s):  
Yongqiang Du ◽  
Jian Zheng ◽  
Guibo Yu

Hydroxyl terminated polybutadiene (HTPB) coating is widely used in a solid rocket motor, but an aging phenomenon exists during long-term storage, which causes irreversible damage to the performance of this HTPB coating. In order to study the effect of aging on the dynamic mechanical properties of the HTPB coating, the thermally-accelerated aging test was carried out. The variation of maximum elongation and crosslinking density with aging time was obtained, and a good linear relationship between maximum elongation and crosslinking density was found by correlation analysis. The changing regularity of dynamic mechanical properties with aging time was analyzed. It was found that with the increase of aging time, Tg of HTPB coating increased, Tα, tan β and tan α decreased, and the functional relationships between the loss factor parameters and crosslinking density were constructed. The storage modulus and loss modulus of HTPB coating increased with the increase of aging time, and decreased with the increase of pre-strain. The aging enhanced the Payne effect of HTPB coating, while the pre-strain had a weakening effect. In view of the Payne effect of HTPB coating, the crosslinking density was introduced into Kraus model as aging evaluation parameter, and the crosslinking density modified models with and without pre-strain were established. The proposed models can effectively solve the problem that the Kraus model has a poor fitting effect under the condition of small strain (generally less than 1%) and on the loss modulus, which have improved the correlations between the fitting results and the test results.


2019 ◽  
Vol 39 (6) ◽  
pp. 508-514
Author(s):  
Yannan He ◽  
Zhiqiang Yu

Abstract The thermal and dynamic mechanical properties of epoxy composites filled with zirconium diboride/nano-alumina (ZrB2/Al2O3) multiphase particles were investigated by means of differential scanning calorimetry, dynamic thermo-mechanical analysis, and numerical simulation. ZrB2/Al2O3 particles were surface organic functional modified by γ-glycidoxypropyltrimethoxysilane for the improvement of their dispersity in epoxy matrix. The results indicated that the curing exotherm of epoxy resin decreased significantly due to the addition of ZrB2/Al2O3 multiphase particles. In comparison to the composites filled with unmodified particles, the modified multiphase particles made the corresponding filling composites exhibit lower curing reaction heat, lower loss modulus, and higher storage modulus. Generally speaking, the composites filled with 5 wt% modified multiphase particles presented the best thermal stability and thermo-mechanical properties due to the better filler-matrix interfacial compatibility and the uniform dispersity of modified particles. Finite element analysis also suggested that the introduction of modified ZrB2/Al2O3 multiphase particles increased the stiffness of the corresponding composites.


Author(s):  
Neda Maftoonazad ◽  
Hosahalli S. Ramaswamy ◽  
Michele Marcotte

The moisture sorption behavior of pectin films formulated with different sorbitol content was evaluated and films with different equilibrium moisture contents were obtained. Different models were used to describe the moisture sorption isotherms (MSI) of pectin films, sorbitol and pectin powder. Based on changes observed in MSI, sorbitol was found to strongly interact with pectin polymers. Incorporation of sorbitol in pectin films resulted in lower equilibrium moisture contents at low to intermediate water activities (aw), but much higher moisture contents at aw > 0.53. Estimates of monolayer moisture values (1.53 – 3.81 g H2O kg-1 solids) were obtained by the application of Guggenheim-Anderson-DeBoer (GAB) model. A differential mechanical analyzer (DMA) was used for mechanical properties of formulated films while a differential scanning calorimeter (DSC) was used for thermal properties and glass transition temperature (Tg). With both DMA and DSC tests, the strong plasticizing action of water and sorbitol was evident. Tg vs. moisture content data were successfully fitted to the Fox empirical model. Multi-frequency DMA measurements provided estimates for the apparent activation energy (Ea) of the second glass transition in the range of 131-184 kJ/mol; the values for Ea decreased with increasing sorbitol concentration. Water vapor permeability (WVP) and mechanical properties of the films were also analyzed under varying sorbitol and moisture contents. Increasing moisture or addition of sorbitol to pectin films increased the elongation at break, but decreased the tensile strength, modulus of elasticity and Tg, and increased WVP of the films.


2018 ◽  
Vol 53 (1) ◽  
pp. 65-72 ◽  
Author(s):  
MK Gupta ◽  
Rohit Singh

In the present work, a novel physical treatment (PLA coating) of sisal fibres and its influence on the water absorption, static and dynamic mechanical properties of its composites has been presented. The treated sisal fibres were used consisted of alkali treatment and PLA coating to fabricate its polyester-based composites by hand lay-up technique keeping constant fibres content as 20 wt.% . Water absorption analysis was carried out in terms of water uptake (%), and sorption, diffusion and permeability coefficient. In addition, static properties were examined in terms of tensile, flexural and impact test, and dynamic mechanical analysis was performed in terms of storage modulus [Formula: see text], loss modulus [Formula: see text], damping [Formula: see text] and glass transition temperature [Formula: see text]. It was reported that the PLA-coated sisal composites showed the best performance in water absorption, mechanical and dynamic mechanical properties than pure sisal and alkali-treated sisal composites. There were 33%, 49%, 48%, and 27% improvement in water resistance, tensile strength, flexural strength and impact strength, respectively, of PLA-coated sisal composites as compared to that of pure sisal composite.


2007 ◽  
Vol 353-358 ◽  
pp. 1729-1732 ◽  
Author(s):  
Lei Chen ◽  
Hong Liang Pan

The storage modulus, loss modulus, loss tangent (tanδ), stress and strain have been determined for painted steel specimens by dynamic mechanical analysis (DMA) operated in Dual Cantilever mode. Analysis of the composite system enabled the elastic modulus of the paint layer to be calculated and the result can be useful to analyze the mechanical properties of the coil coating. The calculation was found to be very sensitive to the geometry (especially thickness of the substrate and coating) and properties of the substrate and coating, leading to considerable variability in the calculated coating modulus. The DMA method was successful in detecting the glass transition temperature (Tg) as a peak in the tanδ curve. The value of Tg is sensitive to the preparation conditions (e.g. curing temperature) and composition of the paint. The results show that DMA in Dual Cantilever can be useful as a characterization tool for painted steel.


2014 ◽  
Vol 931-932 ◽  
pp. 1574-1581
Author(s):  
Nirattisak Khongthon ◽  
Somposh Sudajan

The physical and mechanical properties of sugarcane leaves were necessary for the design consideration of the relating storage, handling and processing equipment. The sugarcane trash at moisture contents of 23.40 and 73.91 % w.b. were used for this study. The mean length and unit weight of sugarcane trashes were 168.63 cm and 65.87 grams respectively. The average number of leaf of each sample was 4. The mean diameter of the thrash top, width and thickness increased with the increase of moisture from 23.40 and 73.91 % w.b.. The average leaf angles (β) relative to the horizontal plane of the first left leaf, second left leaf, first right leaf and second right leaf were 65.10, 73.36, 71.07 and 78.26 degrees for 73.91 % w.b., and 66.33, 73.50, 67.50 and 75.83 degrees for 23.40 % w.b. respectively. When the moisture content increased from 23.40 to 73.91% w.b., the static coefficient of friction increased from 0.30 to 0.43, 0.38 to 0.41, 0.30 to 0.37 and 0.54 to 0.66 for plywood, mild steel, galvanized iron and rubber plate respectively. The least static coefficient of friction occurred on the galvanized iron plate. The results from experimenting on mechanical properties showed that the maximum shearing force increased with the increase in moisture content from 23.40 to 73.91% w.b. respectively. The maximum shearing force was 360.15 and 457.32 N for moisture contents of 23.40 and 73.91% w.b.. The maximum tensile force decreased toward upper region of the leaf for both 23.40 and 73.91% w.b.. The results of this study would be useful for the design and optimization of the equipment associated with harvesting, threshing, chopping and processing.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sembian Manoharan ◽  
Bhimappa Suresha ◽  
Govindarajulu Ramadoss ◽  
Basavaraj Bharath

Fiber plays an important role in determining the hardness, strength, and dynamic mechanical properties of composite material. In the present work, enhancement of viscoelastic behaviour of hybrid phenolic composites has been synergistically investigated. Five different phenolic composites, namely, C1, C2, C3, C4, and C5, were fabricated by varying the weight percentage of basalt and aramid fiber, namely, 25, 20, 15, 10, and 5% by compensating with barium sulphate (BaSO4) to keep the combined reinforcement concentration at 25 wt%. Hardness was measured to examine the resistance of composites to indentation. The hardness of phenolic composites increased from 72.2 to 85.2 with increase in basalt fiber loading. Composite C1 (25 wt% fiber) is 1.2 times harder than composite C5. Compression test was conducted to find out compressive strength of phenolic composites and compressive strength increased with increase in fiber content. Dynamic mechanical analysis (DMA) was carried out to assess the temperature dependence mechanical properties in terms of storage modulus (E′), loss modulus (E′′), and damping factor (tan δ). The results indicate great improvement of E′ values and decrease in damping behaviour of composite upon fiber addition. Further X-ray powder diffraction (XRD) and energy-dispersive X-ray (EDX) analysis were employed to characterize the friction composites.


Sign in / Sign up

Export Citation Format

Share Document