Microstructure adjustment of an asymmetric ceramic membrane with high permeation performance

2021 ◽  
Vol 63 (11) ◽  
pp. 994-998
Author(s):  
Huaitao Zhang ◽  
Xuebing Hu ◽  
Xin Liu ◽  
Zhiyong Yang ◽  
Yun Yu ◽  
...  

Abstract An asymmetric alumina ceramic membrane was prepared by secondary dip coating. The influence of different dispersants and dip coating parameters on the microstructure of the membrane separation layer was explored. Meanwhile, the pure water fluxes of the membranes with various microstructures were also studied. The results show that a separation layer with a defect-free thickness of 16.5 μm and high surface flatness can be obtained when using polycarboxylate as a dispersant and twice dip coating within 2 s + 1 s and the pure water flux of an asymmetric membrane up to 1153 L × m-2 × h-1 × bar-1. The present work provides a simple and effective method for controlling the morphology and permeation performance of an asymmetric alumina membrane.

2021 ◽  
Vol 02 (01) ◽  
Author(s):  
Mohd Riduan Jamalludin ◽  
◽  
Siti Khadijah Hubadillah ◽  
Zawati Harun ◽  
Muhamad Zaini Yunos ◽  
...  

This study investigates the effects of rice husk silica (RHS) as additive in the polysulfone membrane to enhance antifouling properties in membrane separation process. The performance (of what?) was evaluated in term of pure water flux (PWF), rejection and antifouling properties. The optimized of normalized flux (Jf /Jo) at different parameter in filtration (pH, ionic strength and tranmembrane-pressure) was carried out by using the response surface methodology (RSM). The results showed that the addition of 4 wt. % RHS give the highest flux at 300.50 L/m².hour (LMH). The highest rejection was found at 3 wt. % of RHS membrane with value 98% for UV254 and 96% for TOC. The optimal value of Jf/Jo was found at 0.62 with the condition of pH: 6.10, ionic strength: 0.05 mol/L and transmembrane-pressure: 2.67 bars. Optimize of RSM analysis from ANOVA also proved that the error of model is less than 0.05% which indicates that the model is significant.


2010 ◽  
Vol 156-157 ◽  
pp. 30-35 ◽  
Author(s):  
Teng Yun Zhang ◽  
You Yuan Shao ◽  
Jian Chen ◽  
Hong Bo Fan

The novel electrochemical membrane reactor for wastewater treatment was designed and introduced. As the key part of the electromembrane reactor, the tubular membrane electrode was prepared and researched. The tubular inorganic ceramic membrane was endowed with electroconductivity by the deposition of pyrolytic carbon from propylene by chemical vapor deposition. The electrocatalytic property of the membrane electrode was realized through dip-coating with chloroplatinic acid solution, drying and hydrogen reduction in order that the electrocatalyst of reduced platinum can be supported. The SEM characterization and water flux test of the membrane electrode show that membrane separation and electrocatalysis can be integrated together.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 739
Author(s):  
Mohamad Izrin Mohamad Esham ◽  
Abdul Latif Ahmad ◽  
Mohd Hafiz Dzarfan Othman

The main problem usually faced by commercial ceramic membranes in the treatment of produced water (PW) is low water flux even though ceramic membrane was well-known with their excellent mechanical, thermal, and chemical properties. In the process of minimizing the problem faced by commercial ceramic membranes, titanium dioxide (TiO2) nanocomposites, which synthesized via a sol-gel method, were deposited on the active layer of the hydrolysed bentonite membrane. This paper studied the influence of grafting time of TiO2 nanocomposite on the properties and performance of the coated bentonite membranes. Several characterizations, which are Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray Spectroscopy (EDX), contact angle, porosity, and average pore size, were applied to both pristine and coated bentonite membranes to compare the properties of the membranes. The deposition of TiO2 nanoparticles on the surface of the coated bentonite membranes was successfully confirmed by the characterization results. The pure water flux performance showed an increment from 262.29 L h−1 m−² bar−1 (pristine bentonite membrane) to 337.05 L h−1 m−² bar−1 (Ti-Ben 30) and 438.33 L h−1 m−² bar−1 (Ti-Ben 60) as the grafting time increase but when the grafting time reached 90 min (Ti-Ben 90), the pure water flux was decreased to 214.22 L h−1 m−² bar−1 which is lower than the pristine membrane. The oil rejection performance also revealed an increase in the oil rejection performance from 95 to 99%. These findings can be a good example to further studies and exploit the advantages of modified ceramic membranes in PW treatment.


2020 ◽  
Vol 20 (9) ◽  
pp. 5951-5958
Author(s):  
Menghan Sun ◽  
Mingrui Cui ◽  
Yibo Wang ◽  
Xinfei Fan ◽  
Chengwen Song

Membrane separation is recognized to be a promising technology for addressing water crisis. Unfortunately, the emergence of membrane fouling and low removal efficiency makes it unattractive for practical application. Herein, an electrochemical multifunctional CNT/Al2O3 membrane was designed coupled multiple electrochemical functions with pore sieving, which could maintain high permeability and achieve good removal efficiency simultaneously, even for those molecules with size smaller than pore size. The multifunctional CNT/Al2O3 membrane possessing a pore size of 140 nm and pure water flux of 869.6 L · m-2 · h-1 · bar-1 was prepared. The results show that the multifunctional CNT/Al2O3 membrane exhibited a good anti-fouling properties for both bio-fouling and chemical fouling under electrochemical assistance with a permeability 3.6 and 1.5 times higher than those of CNT/Al2O3 membrane alone for the treatment of E. coli and humic acid, respectively. In addition, the CNT/Al2O3 membrane with electrochemical assistance also shows a high removal efficiency for the treatment of perfluorooctane sulphonate (PFOS) and phenol whose sizes are smaller than pore size. As for the treatment of surface water, it also presented a good performance. Finally, the regeneration of the membrane was investigated and the fouled membrane was reused through an electrochemical assisted back-wash method.


2012 ◽  
Vol 251 ◽  
pp. 383-386
Author(s):  
Yun Gu ◽  
Juan Lin ◽  
Wei Qing Han ◽  
Xiao Dong Liu ◽  
Lian Jun Wang

In this work, tin dioxide was chosen to make tubular ceramic membrane. The morphology was characterized by SEM, XRD and Poremaster. The SEM analysis reveals that the distribution of membrane pore is uniform. The average pore size is 2 μm. Pure water flux is 5.26 m3Superscript text•m-2•h-1 at 0.1 Mpa. Porosity of tin dioxide membrane is 40%.


2018 ◽  
Vol 80 (6) ◽  
Author(s):  
Maisarah Mohamed Bazin ◽  
Yuzo Nakamura ◽  
Norhayati Ahmad

Microfiltration membrane made from Sayong ball clay by using uniaxial dry compaction method was used to treat natural organic matter (NOM) source water. A sintering temperature of 900 °C to 1000 °C were applied. The effect of sintering temperature on membrane porosity, strength and water flux were identified. The porosity of the membrane decreased with increasing sintering temperature and the strength and flux increased with temperature. The membrane was subjected to NOM filtration experiments. The results showed an improvement to the quality of permeate water, where there is a reduction in COD, TSS, BOD5, turbidity, hardness and salinity; and an increased pH value. The effect of chemical cleaning on the fouled membrane also was studied. After cleaning with NaOH solution, a high flux recovery was achieved (up to 50% from the initial pure water flux). The degree of cleanliness of fouled membranes after chemical cleaning was further observed with SEM and EDX analysis.


2012 ◽  
Vol 531-532 ◽  
pp. 18-21 ◽  
Author(s):  
Watchanida Chinpa

A poly(ether imide) (PEI) composite membrane was prepared by dip coating a PEI membrane pretreated with 2-aminoethanole (AEOH) into an aqueous solution of poly(vinyl alcohol) PVA and glutaraldehyde (GA). PEI membrane support was firstly prepared via phase inversion technique by casting a solution of PEI in N-methylpyrrolidone (NMP), using water as non-solvent. The hydrophilicity, permeability, anti-fouling and mechanical properties of unmodified PEI and PEI/PVA composite membranes were investigated. By comparison with the unmodified PEI membrane, the PEI/PVA composite membrane exhibited a higher pure water flux and an increase in its hydrophilicity. In addition, the flux recovery of the pure water flux of the composite PEI membrane was higher than that of the unmodified PEI membrane. This indicated that the obtained composite membrane could reduce the membrane fouling and improve its use for ultrafiltration.


2011 ◽  
Vol 480-481 ◽  
pp. 201-206
Author(s):  
Li Guo Wang ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
Wen Juan Liu ◽  
Shi Qi Guo ◽  
...  

Hydrophilic Polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of acrylic acid grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated via orthogonal test, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF membranes were prepared. Then hydrophilic PVDF membranes were characterized in terms of breaking strength, breaking elongation, rupture pressure, pure water flux and rejection. The fouling properties and the conditions of acrylic acid grafted onto PVDF were also examined. The results showed that acrylic acid had been grafted onto PVDF, the breaking strength and rupture pressure improved greatly, and the fouling properties were better than PS hollow fiber UF membrane.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
A. F. Ismail ◽  
Mukhlis A. Rahman ◽  
Juhana Jaafar

Ceramic hollow fibre membrane (CHFM) demonstrated superior characteristics and performance in any separation application. The only problem associated with this kind of technology is the high cost. In order to effectively fabricate and produce low cost porous CHFM, a series of CHFMs made of kaolin were fabricated via combined phase inversion and sintering technique. The CHFMs from kaolin named as kaolin hollow fibre membranes (KHFMs) were studied at different kaolin contents of 35 wt.%, 37.5 wt.% and 40 wt.% sintered at 1200ºC. The result indicated that by varying kaolin contents, different morphologies were obtained due to changes in the viscosity of ceramic suspension containing kaolin. The optimum kaolin content for KHFM was identified. It was found that KHFM prepared at 37.5 wt% has a mechanical strength and pure water flux of A and B respectively.  


2014 ◽  
Vol 931-932 ◽  
pp. 168-172 ◽  
Author(s):  
Asmadi Ali ◽  
Mohamad Awang ◽  
Ramli Mat ◽  
Anwar Johari ◽  
Mohd Johari Kamaruddin ◽  
...  

It is well known that membrane with hydrophobic property is a fouling membrane. Polysulfone (PSf) membrane has hydrophobic characteristic was blended with a hydrophilic polymer, cellulose acetate phthalate (CAP) in order to increase hydrophilicity property of pure PSf membrane. In this study, membrane casting solutions containing 17 wt% of polymer was prepared via wet phase inversion process. The pure PSf membrane was coded as PC-0. PSf/CAP blend membranes with blend composition of 95/5, 90/10, 85/15 and 80/20 wt% of total polymer concentration in the membrane casting solutions were marked as PC-5, PC-10, PC-15 and PC-20 respectively. All of the membranes were characterized in terms of pure water flux and permeability coefficient in order to study their hydrophilicity properties. The investigated results shows that increased of CAP composition in PSf blend membranes has increased pure water flux, permeability coefficient and porosity of the blend membrane which in turn formed membrane with anti-fouling property.


Sign in / Sign up

Export Citation Format

Share Document