scholarly journals Hybrid cavity-antenna systems for quantum optics outside the cryostat?

Nanophotonics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1513-1531 ◽  
Author(s):  
Isabelle M. Palstra ◽  
Hugo M. Doeleman ◽  
A. Femius Koenderink

AbstractHybrid cavity-antenna systems have been proposed to combine the sub-wavelength light confinement of plasmonic antennas with microcavity quality factors Q. Here, we examine what confinement and Q can be reached in these hybrid systems, and we address their merits for various applications in classical and quantum optics. Specifically, we investigate their applicability for quantum-optical applications at noncryogenic temperatures. To this end we first derive design rules for hybrid resonances from a simple analytical model. These rules are benchmarked against full-wave simulations of hybrids composed of state-of-the-art nanobeam cavities and plasmonic-dimer gap antennas. We find that hybrids can outperform the plasmonic and cavity constituents in terms of Purcell factor, and additionally offer freedom to reach any Q at a similar Purcell factor. We discuss how these metrics are highly advantageous for a high Purcell factor, yet weak-coupling applications, such as bright sources of indistinguishable single photons. The challenges for room-temperature strong coupling, however, are far more daunting: the extremely high dephasing of emitters implies that little benefit can be achieved from trading confinement against a higher Q, as done in hybrids. An attractive alternative could be strong coupling at liquid nitrogen temperature, where emitter dephasing is lower and this trade-off can alleviate the stringent fabrication demands required for antenna strong coupling. For few-emitter strong-coupling, high-speed and low-power coherent or incoherent light sources, particle sensing and vibrational spectroscopy, hybrids provide the unique benefit of very high local optical density of states, tight plasmonic confinement, yet microcavity Q.

2012 ◽  
Vol 542-543 ◽  
pp. 828-832 ◽  
Author(s):  
Jing Fang Yang ◽  
Xian Ying Feng ◽  
Hong Jun Fu ◽  
Lian Fang Zhao

Tire dynamic balance detection plays an important part in tire quality detection area. This paper uses the two-sided balance method to obtain the unbalance of the tire. According to the engineering practice, builds kinetic model and then introduces the calculating principle and operating procedures. In order to accurately determine the influence coefficient, a calibration method without tire is put forward. Further more, this new method is able to eliminate the unbalance caused by non-quality factors to some extent. But this method is presented based on the relative position invariance of the upper rim and lower rim, even both of them are under high-speed rotation situation. Finally, the experimental data acquired from both of the two methods are compared. The calibration method without tire is proved to be more feasible, efficient and accurate.


2020 ◽  
Vol 8 ◽  
Author(s):  
Th. Lamprou ◽  
I. Liontos ◽  
N. C. Papadakis ◽  
P. Tzallas

Abstract Nonclassical light sources have a vital role in quantum optics as they offer a unique resource for studies in quantum technology. However, their applicability is restricted by their low intensity, while the development of new schemes producing intense nonclassical light is a challenging task. In this perspective article, we discuss potential schemes that could be used towards the development of high photon flux nonclassical light sources and their future prospects in nonlinear optics.


2021 ◽  
Author(s):  
Yiwei Feng ◽  
Tiegang Liu ◽  
Xiaofeng He ◽  
Bin Zhang ◽  
Kun Wang

Abstract In this work, we extend the characteristic-featured shock wave indicator based on artificial neuron training to 3D high-speed flow simulation on unstructured mesh. The extension is achieved through dimension splitting. This leads to that the proposed indicator is capable of identifying regions of flow compression in any direction. With this capability, the indicator is further developed to combine with h-adaptivity of mesh refinement to improve resolution with less computational costs. The present indicator provided an attractive alternative for constructing high-resolution, high-efficiency shock-processing method to simulate high-speed inviscid flows.


2020 ◽  
Vol 238 ◽  
pp. 05004
Author(s):  
Gabriel W. Castellanos ◽  
Shunsuke Murai ◽  
T.V. Raziman ◽  
Shaojun Wang ◽  
Mohammad Ramezani ◽  
...  

We demonstrate the strong coupling between excitons in organic molecules and all-dielectric metasurfaces formed by arrays of silicon nanoparticles supporting Mie surface lattice resonances (MSLRs). Compared to Mie resonances in individual nanoparticles, MSLRs have extended mode volumes and much larger quality factors, which enables to achieve collective strong coupling with very large coupling strengths and Rabi energies. Moreover, due to the electric and magnetic character of the MSLR given by the Mie resonance, we show that the hybridization of the exciton with the MSLR results in exciton-polaritons that inherit this character as well. Our results demonstrate the potential of all-dielectric metasurfaces as novel platform to investigate and manipulate exciton-polaritons in low-loss polaritonic devices.


Science ◽  
2018 ◽  
Vol 361 (6409) ◽  
pp. 1358-1363 ◽  
Author(s):  
David R. Carlson ◽  
Daniel D. Hickstein ◽  
Wei Zhang ◽  
Andrew J. Metcalf ◽  
Franklyn Quinlan ◽  
...  

Light sources that are ultrafast and ultrastable enable applications like timing with subfemtosecond precision and control of quantum and classical systems. Mode-locked lasers have often given access to this regime, by using their high pulse energies. We demonstrate an adaptable method for ultrastable control of low-energy femtosecond pulses based on common electro-optic modulation of a continuous-wave laser light source. We show that we can obtain 100-picojoule pulse trains at rates up to 30 gigahertz and demonstrate sub–optical cycle timing precision and useful output spectra spanning the near infrared. Our source enters the few-cycle ultrafast regime without mode locking, and its high speed provides access to nonlinear measurements and rapid transients.


2020 ◽  
Vol 10 (9) ◽  
pp. 3257
Author(s):  
Hoang Vu ◽  
Ngoc Minh Kieu ◽  
Do Thi Gam ◽  
Seoyong Shin ◽  
Tran Quoc Tien ◽  
...  

Redistribution of LED radiation in lighting is necessary in many applications. In this article, we propose a new optical component design for LED lighting to achieve a higher performance. The design consists of a commercial collimator and two linear Fresnel lenses. The LED radiation is collimated by a collimator and redistributed by double linear Fresnel lenses to create a square-shaped, uniform distribution. The linear Fresnel lenses design is based on Snell’s law and the “edge-ray principle”. The optical devices are made from poly methyl methacrylate (PMMA) using a high-speed computer numerical control (CNC) machine. The LED prototypes with complementary optics were measured, and the optical intensity distribution was evaluated. The numerical results showed we obtained a free-form lens that produced an illumination uniformity of 78% with an efficiency of 77%. We used the developed LED light sources for field experiments in agricultural lighting. The figures of these tests showed positive effects with control flowering criteria and advantages of harvested products in comparison with the conventional LED sources. This allows our approach in this paper to be considered as an alternative candidate for highly efficient and energy-saving LED lighting applications.


1999 ◽  
Vol 121 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Patrice Fayolle ◽  
Dara W. Childs

Hybrid bearings represent an attractive alternative to ball bearings for use in highspeed cryogenic turbopumps. However, the internally-developed cross-coupled forces can generate instabilities responsible for a speed limitation of the machine. To reduce these forces and raise the onset speed of instability, the use of deliberately-roughened stators, already successfully tested for liquid “damper” seals, is investigated. Rotor-dynamic results are presented for a five-pocket orifice-compensated hole-pattern-land hybrid bearing tested with water at high speed and high pressure. Experimental data show a good prediction of leakage flow rate and direct damping but a significant improvement in stability compared to a conventional smooth-land hybrid bearing, resulting in an elevation of the onset speed of instability. Comparisons between measurements and predictions from a code developed by San Andres (1994) shows good predictions for flowrate and direct damping but an over prediction for the direct and cross-coupled stiffness coefficients by about 30 and 50 percent, respectively. The use of the Moody friction-factor model is thought to be mainly responsible for the poorer predictions of stiffness coefficients.


Sign in / Sign up

Export Citation Format

Share Document