Rotordynamic Evaluation of a Roughened-Land Hybrid Bearing

1999 ◽  
Vol 121 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Patrice Fayolle ◽  
Dara W. Childs

Hybrid bearings represent an attractive alternative to ball bearings for use in highspeed cryogenic turbopumps. However, the internally-developed cross-coupled forces can generate instabilities responsible for a speed limitation of the machine. To reduce these forces and raise the onset speed of instability, the use of deliberately-roughened stators, already successfully tested for liquid “damper” seals, is investigated. Rotor-dynamic results are presented for a five-pocket orifice-compensated hole-pattern-land hybrid bearing tested with water at high speed and high pressure. Experimental data show a good prediction of leakage flow rate and direct damping but a significant improvement in stability compared to a conventional smooth-land hybrid bearing, resulting in an elevation of the onset speed of instability. Comparisons between measurements and predictions from a code developed by San Andres (1994) shows good predictions for flowrate and direct damping but an over prediction for the direct and cross-coupled stiffness coefficients by about 30 and 50 percent, respectively. The use of the Moody friction-factor model is thought to be mainly responsible for the poorer predictions of stiffness coefficients.

Author(s):  
Isao Hagiya ◽  
Katsutoshi Kobayashi ◽  
Yoshimasa Chiba ◽  
Tetsuya Yoshida ◽  
Akira Arai

We predicted the leakage flow rates of a pressure seal in an actual high-pressure multistage pump. Since the pressure of the actual pump is higher than that of a model pump, accurate prediction of leakage flow rate and rotor dynamic forces for an actual pump is more difficult than that for a model pump. A non-contacting seal is used as a pressure seal to suppress leakage flow for high-pressure multistage pumps. When such pumps are operated at high speed, the fluid force acting on an eccentric rotor may cause vibration instability. For vibration stability analysis, we need to estimate static and dynamic characteristics of the pressure seals, i.e., leakage flow rate and rotor dynamic coefficients. We calculated the characteristics of the pressure seal based on Iwatsubo group’s method. The pressure seal we developed has labyrinth geometry consisting of grooves with different sizes. This method numerically calculates the characteristics of the grooved seal by using a three-control-volume model and a perturbation method. We compared the calculated and measured leakage flow rates. We found that the calculated results quantitatively agreed with the measured one in the actual pump and the characteristics of pressure and velocity for the seal with non-uniform-sized grooves were clarified.


Author(s):  
Se Na Jeong ◽  
Tae Ho Kim ◽  
Chang Ho Kim ◽  
Yong Bok Lee

Combined smart bearing (CSB) integrates two oil free bearing technologies to take advantage of the strengths of each bearing with minimizing each other weaknesses. It is for enhancing dynamic stability and load carrying capacity [1]. Moreover, CSB have a shorter length than size of hybrid bearing suggested by Heshmat in same performance [2]. So, it has the advantage of the design in high speed turbo machinery. This paper presents vibration control of a high speed rotor supported by CSB. An experiment set-up of a rotor bearing system is built. And rotor dynamic analysis of the rigid rotor on critical speeds is performed. For the experimental approach, unbalance responses of the rigid rotor supported by each bearings: air foil bearing (AFB) and CSB are compared to verify the effectiveness of the CSB. First, the PD control parameters of the magnetic bearing were to find out in stable range experimentally. Then according to the angle of unbalance experiments, compared the performance of AFB and CSB. The result, the shaft vibration in a critical speed is significantly suppressed by the CSB rather than AFB.


1999 ◽  
Vol 121 (4) ◽  
pp. 886-891 ◽  
Author(s):  
Franck Laurant ◽  
Dara W. Childs

Given the inherent DN and assembly limitations of rolling-element bearings, research is underway to develop hybrid bearings (combining hydrostatic and hydrodynamic effects) for their replacement. Hybrid bearings develop cross-coupled stiffness coefficients due to fluid rotation, leading to predictions of onset speeds of instability and potential limitations in their range of application. Injecting fluid into a bearing recess against rotation, versus the customary radial injection, can reduce the circumferential flow and the cross-coupled-stiffness coefficients, and increase the margin of stability. Test results are presented here for a hybrid bearing with against-rotation injection. The bearing has a 76.4 mm diameter with LID = 1, and CrIR = 0.001. Data are presented for 55°C water at three speeds out to 25000 rpm and three pressures out to 7.0 MPa. Compared to a radial-injection hybrid bearing, experiments show injection against rotation enhances stability, yielding reductions of cross-coupled stiffness coefficients and whirl frequency ratios. However, increased flow rate and a drop of effective stiffness with increasing speed adversely affect the bearing performance. The prediction code developed by San Andres (1995) includes angled-orifice injection. The code correctly predicts trends, but at low speed, measured cross-coupled stiffness coefficients are positive, versus a prediction of larger negative values.


1995 ◽  
Vol 117 (2) ◽  
pp. 285-290 ◽  
Author(s):  
Nancy M. Franchek ◽  
Dara W. Childs ◽  
Luis San Andres

Comparisons are presented between measurements and predictions for a 76.2 mm diameter, high-speed (24,600 rpm), high-pressure (7.0 MPa), hybrid bearings using warm (54°C) water as a test fluid. “Hybrid” refers to combined hydrostatic and hydrodynamic action. Test results are presented for an orifice-fed, square-recess configuration with five recesses. Data are provided for rotordynamic coefficients including direct and cross-coupled stiffness, direct damping, direct added-mass coefficients, and the whirl-frequency ratio. Experimental results are compared to predictions from an analysis by San Andres (1990a), which accounts for both temporal and convective acceleration terms in the fluid film. San Andres’ development uses an orifice discharge coefficient to model the pressure drop from supply pressure to recess pressure. With experimentally determined discharge-coefficient values as input, good agreement is obtained between theory and experiment. However, predictions are sensitive to changes in the orifice discharge coefficients.


Author(s):  
Siddappa I Bekinal ◽  
Sadanand S Kulkarni ◽  
Soumendu Jana

This paper presents the design and development of a hybrid bearing set for complete passive levitation of a typical rotor. A hybrid bearing set consists of permanent magnet thrust bearing and radial discrete bump foil bearings. The permanent magnet thrust bearing is made up of three pairs of ring magnets arranged in rotation magnetized direction. The mathematical model to determine the force and stiffness in rotation magnetized direction configuration is presented using Coulombian model and vector approach. Bump foil bearings are designed and developed for rotor weight to provide the radial support to the rotor system. The proposed bearing set with rotor is analysed using finite element analysis for rotor dynamic characteristics. The experiments are conducted on the fabricated rotor-bearing configuration by rotating the rotor up to the speeds of 40,000 r/min. The system response is acquired using advanced rotor-dynamic data acquisition system. The experimental results show that the rotor is completely airborne and stable at the desired speed.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


Author(s):  
Guan-Chung Ting ◽  
Kuang-Yuh Huang ◽  
Keng-Ning Chang

Bearings for high-speed rotors are the key component of dental handpieces. The friction induced by conventional ball bearings restricts its speed and reduces its efficiency. In order to significantly improve the efficiency of dental handpieces, a mini-type cartridge that integrates a turbine and a spindle with radial aerostatic bearings and axial passive magnetic bearings has been ingeniously designed and realized. Around the rotating spindle, there is a high-pressured air film built up by a pair of radial aerostatic bearings, and magnet rings are applied to create repulsive forces to axially support the rotating spindle. The high-pressured air film comes from the specifically designed separable orifice restrictors, which can be easily and precisely manufactured. Frictionless bearing effect can be achieved by aerostatic principle, and the magnetic principle is applied to create large repulsive force against the axial working force. A tri-directional air inlet is designed to reduce radial loading force of a spindle during working. The modularized form of the magneto-aerostatic bearing allows it to be easily assembled and replaced in the very compact space of a mini-type cartridge. Through analytical simulations with fluid-dynamics software (CFD) and experiments, the magneto-aerostatic bearing is optimized to bring out efficient performance in its limited space. The experiments have verified that its noise level is 15dB lower than the conventional cartridge with ball bearings, and its startup air pressure is reduced from 0.4 bar to 0.1 bar. Under the same operation conditions, the newly developed cartridge with magneto-aerostatic bearings creates twice higher speed than that of the conventional one.


Author(s):  
A. Arroyo ◽  
M. McLorn ◽  
M. Fabian ◽  
M. White ◽  
A. I. Sayma

Rotor-dynamics of Micro Gas Turbines (MGTs) under 30 kW have been a critical issue for the successful development of reliable engines during the last decades. Especially, no consensus has been reached on a reliable MGT arrangement under 10 kW with rotational speeds above 100,000 rpm, making the understanding of the rotor-dynamics of these high speed systems an important research area. This paper presents a linear rotor-dynamic analysis and comparison of three mechanical arrangements of a 6 kW MGT intended for utilising Concentrated Solar Power (CSP) using a parabolic dish concentrator. This application differs from the usual fuel burning MGT in that it is required to operate at a wider operating speed range. The objective is to find an arrangement that allows reliable mechanical operation through better understanding of the rotor dynamics for a number of alternative shaft-bearings arrangements. Finite Element Analysis (FEA) was used to produce Campbell diagrams and to determine the critical speeds and mode shapes. Experimental hammer tests using a new approach based on optical sensing technology were used to validate the rotor-dynamic models. The FEA simulation results for the natural frequencies of a shaft arrangement were within 5% of the measurements, while the deviation for the shaft-bearings arrangement increased up to 16%.


2018 ◽  
Vol 70 (1) ◽  
pp. 15-22 ◽  
Author(s):  
De-xing Zheng ◽  
Weifang Chen ◽  
Miaomiao Li

Purpose Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings. Design/methodology/approach Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results. Findings The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified. Originality/value This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.


2017 ◽  
Vol 45 ◽  
pp. 1760020
Author(s):  
Henrique Linares ◽  
Carlos Frajuca ◽  
Fabio S. Bortoli ◽  
Givanildo A. Santos ◽  
Francisco Y. Nakamoto

This work aims to design a magnetic suspension for an experiment to measure gravitys velocity. Such device must rotate two objects symmetrically with the greatest mass and largest radius as possible, at the speed of [Formula: see text], which means this device falls into the high-speed machines category. The guidelines and solutions proposed in this paper constitute a contribution to this class of engineering problems and were based on an extensive literature search, contacts with experts, the tutors and author’s experience, as well as on experimental results. The main solution proposed is a hybrid bearing that combines a radial passive magnetic bearing with an axial sliding bearing, here called MPS (Magnetic Passive and Sliding) bearing.


Sign in / Sign up

Export Citation Format

Share Document