scholarly journals Integrated and spectrally selective thermal emitters enabled by layered metamaterials

Nanophotonics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 1285-1293
Author(s):  
Yongkang Gong ◽  
Kang Li ◽  
Nigel Copner ◽  
Heng Liu ◽  
Meng Zhao ◽  
...  

Abstract Nanophotonic engineering of light–matter interaction at subwavelength scale allows thermal radiation that is fundamentally different from that of traditional thermal emitters and provides exciting opportunities for various thermal-photonic applications. We propose a new kind of integrated and electrically controlled thermal emitter that exploits layered metamaterials with lithography-free and dielectric/metallic nanolayers. We demonstrate both theoretically and experimentally that the proposed concept can create a strong photonic bandgap in the visible regime and allow small impedance mismatch at the infrared wavelengths, which gives rise to optical features of significantly enhanced emissivity at the broad infrared wavelengths of 1.4–14 μm as well as effectively suppressed emissivity in the visible region. The electrically driven metamaterial devices are optically and thermally stable at temperatures up to ∼800 K with electro-optical conversion efficiency reaching ∼30%. We believe that the proposed high-efficiency thermal emitters will pave the way toward integrated infrared light source platforms for various thermal-photonic applications and particularly provide a novel alternative for cost-effective, compact, low glare, and energy-efficient infrared heating.

Author(s):  
Tun Cao ◽  
Meng Lian ◽  
Xianchao Lou ◽  
Kuan Liu ◽  
Yaoming Guo ◽  
...  

Abstract Efficient thermal radiation in the mid-infrared (M-IR) region is of supreme importance for many applications including thermal imaging and sensing, thermal infrared light sources, infrared spectroscopy, emissivity coatings, and camouflage. The capability of controlling light makes metasurface an attractive platform for infrared applications. Recently, different metamaterials have been proposed to achieve high thermal radiation. To date, broadening of the radiation bandwidth of metasurface emitter (meta-emitter) has become a key goal to enable extensive applications. We experimentally demonstrate a broadband M-IR thermal emitter using stacked nanocavity metasurface consisting of two pairs of circular-shaped dielectric (Si3N4) – metal (Au) stacks. A high thermal radiation can be obtained by engineering the geometry of nanocavity metasurface. Such a meta-emitter provides wideband and broad angular absorptance of both p- and s-polarized light, offering a wideband thermal radiation with an average emissivity of more than 80% in the M-IR atmospheric window of 8–14 μm. The experimental illustration together with theoretical framework places a basis for designing broadband thermal emitters, which, as anticipated, will initiate a promising avenue to M-IR source.


Author(s):  
Alok Ghanekar ◽  
Yi Zheng

We theoretically demonstrate a novel, efficient and cost effective thermal emitter using a Mie-resonance metamaterial for thermophotovoltaic (TPV) applications. We propose for the first time the design of a thermal emitter which is based on nanoparticle-embedded thin film. The emitter consists of a thin film of SiO2 on the top of tungsten layer deposited on a substrate. The thin film is embedded with tungsten nanoparticles which alter the refractive index of the film. This gives rise to desired emissive properties in the wavelength range of 0.4 μm to 2 μm suitable for GaSb and InGaAs based photovoltaics. Effective dielectric properties are calculated using Maxwell-Garnett-Mie theory. Our calculations indicate this would significantly improve the efficiency of TPV cells. We introduce a new parameter to gauge the efficacy of thermal emitters and use it to compare different designs.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Muhammad Ashar Naveed ◽  
Muhammad Afnan Ansari ◽  
Inki Kim ◽  
Trevon Badloe ◽  
Joohoon Kim ◽  
...  

AbstractHelicity-multiplexed metasurfaces based on symmetric spin–orbit interactions (SOIs) have practical limits because they cannot provide central-symmetric holographic imaging. Asymmetric SOIs can effectively address such limitations, with several exciting applications in various fields ranging from asymmetric data inscription in communications to dual side displays in smart mobile devices. Low-loss dielectric materials provide an excellent platform for realizing such exotic phenomena efficiently. In this paper, we demonstrate an asymmetric SOI-dependent transmission-type metasurface in the visible domain using hydrogenated amorphous silicon (a-Si:H) nanoresonators. The proposed design approach is equipped with an additional degree of freedom in designing bi-directional helicity-multiplexed metasurfaces by breaking the conventional limit imposed by the symmetric SOI in half employment of metasurfaces for one circular handedness. Two on-axis, distinct wavefronts are produced with high transmission efficiencies, demonstrating the concept of asymmetric wavefront generation in two antiparallel directions. Additionally, the CMOS compatibility of a-Si:H makes it a cost-effective alternative to gallium nitride (GaN) and titanium dioxide (TiO2) for visible light. The cost-effective fabrication and simplicity of the proposed design technique provide an excellent candidate for high-efficiency, multifunctional, and chip-integrated demonstration of various phenomena.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3184
Author(s):  
Jing Li ◽  
Yonggang He ◽  
Han Ye ◽  
Tiesheng Wu ◽  
Yumin Liu ◽  
...  

Metasurface-based beam splitters attracted huge interest for their superior properties compared with conventional ones made of bulk materials. The previously reported designs adopted discrete metasurfaces with the limitation of a discontinuous phase profile. In this paper, we propose a dual-band beam splitter, based on an anisotropic quasi-continuous metasurface, by exploring the optical responses under x-polarized (with an electric field parallel to the direction of the phase gradient) and y-polarized incidences. The adopted metasurface consists of two identical trapezoidal silicon antenna arrays with opposite spatial variations that lead to opposite phase gradients. The operational window of the proposed beam splitter falls in the infrared and visible region, respectively, for x- and y-polarized light, resulting from the different mechanisms. When x-polarized light is incident, the conversion efficiency and total transmission of the beam splitter remains higher than 90% and 0.74 within the wavelength range from 969 nm to 1054 nm, respectively. In this condition, each array can act as a beam splitter of unequal power. For y-polarized incidence, the maximum conversion efficiency and transmission reach approximately 100% and 0.85, while the values remain higher than 90% and 0.65 in the wavelength range from 687 nm to 710 nm, respectively. In this case, each array can be viewed as an effective beam deflector. We anticipate that it can play a key role in future integrated optical devices.


2021 ◽  
Vol 13 (9) ◽  
pp. 4651
Author(s):  
Ming-Lun Alan Fong

The analysis of ventilation strategies is fundamentally affected by regional climate conditions and local cost databases, in terms of energy consumption, CO2 emission and cost-effective analysis. A systematic approach is covered in this paper to estimate a local economic and environmental impact on a medium-sized space located in two regions during supply-and-installation and operation phases. Three ventilation strategies, including mixing ventilation (MV), displacement ventilation (DV) and stratum ventilation (SV) were applied to medium-sized air-conditioned space with this approach. The trend of the results for three ventilation systems in the life cycle assessment (LCA) and life cycle cost (LCC) analysis is SV < DV < MV. The result of CO2 emission and regional LCC shows that SV is the lowest one in both regional studies. In comparison with the Hong Kong Special Administrative Region (HKSAR) during 20 Service years, the case analysis demonstrates that the percentage differences in LCC analysis of MV, DV & SV in Guangdong are less than 20.5%, 19.4% and 18.82% respectively. Their CO2 emission of MV, DV and SV in Guangdong are more than HKSAR in 10.69%, 11.22% and 12.05%, respectively. The present study could provide information about regional effects in the LCA and LCC analysis of three ventilation strategies emissions, and thereby help set up models for decision-making on high efficiency and cost-effective ventilation strategy plans.


2006 ◽  
Vol 129 (3) ◽  
pp. 298-303 ◽  
Author(s):  
V. M. Andreev ◽  
A. S. Vlasov ◽  
V. P. Khvostikov ◽  
O. A. Khvostikova ◽  
P. Y. Gazaryan ◽  
...  

Results of a solar thermophotovoltaic (STPV) system study are reported. Modeling of the STPV module performance and the analysis of various parameters influencing the system are presented. The ways for the STPV system efficiency to increase and their magnitude are considered such as: improvement of the emitter radiation selectivity and application of selective filters for better matching the emitter radiation spectrum and cell photoresponse; application of the cells with a back side reflector for recycling the sub-band gap photons; and development of low-band gap tandem TPV cells for better utilization of the radiation spectrum. Sunlight concentrator and STPV modules were designed, fabricated, and tested under indoor and outdoor conditions. A cost-effective sunlight concentrator with Fresnel lens was developed as a primary concentrator and a secondary quartz meniscus lens ensured the high concentration ratio of ∼4000×, which is necessary for achieving the high efficiency of the concentrator–emitter system owing to trap escaping radiation. Several types of STPV modules have been developed and tested under concentrated sunlight. Photocurrent density of 4.5A∕cm2 was registered in a photoreceiver based on 1×1cm2GaSb cells under a solar powered tungsten emitter.


Author(s):  
K R Parker

Particulate control equipment for the larger industrial processes, which can effectively collect particles in the submicrometre range, is limited to the electrostatic precipitator and bag filter as cost effective methods. To meet ever decreasing emission levels, demanded by the Regulatory Agencies, the equipment suppliers and academics are involved in ongoing research and development activities in order to obtain a better understanding of the collection process itself, such as to achieve improved performance and, equally importantly, plant reliability and availability. This paper reviews some of the activities in the electrical, microelectronics, material sciences, fluid flow and finite element analysis fields and indicates how the findings are leading to new designs that are more reliable and also how the improvements are making the equipment more cost effective while operating at a higher performance level. Finally, with the concern over the emission of ‘air toxics’, while both the electrostatic precipitator and bag filter are established technology for effectively removing solid and liquid particulates with sizings well below 1 micrometre there is now an additional requirement for collecting vapour phase materials to meet the latest regulatory emission levels. Some ideas and approaches are examined which can prove effective in collecting the majority of materials classified as ‘air toxics’, such that the equipment will meet the existing and possible future emission standards.


Sign in / Sign up

Export Citation Format

Share Document